
Opt Out at Your Own Expense

Designing Systems for Adversarial Contexts

by

Jack Wampler

B.S., University of California San Diego, 2017

A thesis proposal submitted to the

Faculty of the Graduate School of the

University of Colorado in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

Department of Electrical Computer and Energy Engineering

2023

Committee Members:

Eric Wustrow, Chair

Eric Keller

Tamara Lehman

Shivakant Mishra

Sangtae Ha

ii

Wampler, Jack (Ph.D., Computer Engineering)

Opt Out at Your Own Expense

Designing Systems for Adversarial Contexts

Thesis directed by Prof. Eric Wustrow

Complex systems are multifunctional machines compositionally built of operations in order

to complete a set of tasks in alignment with a descriptive protocol. This description is intentionally

broad as complex systems are found all around us in life. The functionality of these systems is

critical to the continued operation of things like computer processors and communication tech-

nologies. However, the actual functionality that complex systems present in implementing their

intended protocol almost always goes beyond the expectations of the designers, with the extended

functionality often being unavoidable and unremovable.

This work builds up an examination of this Collateral Centered Design through case

studies that demonstrate the benefits of designing and constructing applications around of the

unintended functionalities of a parent system. The first complex system in question is pipelined

processors which continue to integrate complex subprocesses for performance optimization. The

second is the Internet Protocol (IP) which enables global communication and commerce. The third

complex system is one layer up, looking at the protocols spoken over the internet and building

a circumvention runtime that allows rapid reconfiguration to match those protocols. For each of

these systems I build an empirical understanding of their operational boundaries through structured

measurement. I identify goals and adversaries within the context of our desired functionality.

Finally I describe in detail each implementation as well as the challenges associated with operating

and scaling systems designed in this way.

I hope to demonstrate that leveraging existing behaviors in a complex system to implement

new functionality can make avoidance more complicated for adversaries – ideally resulting in an

ultimatum where participation in the system requires toleration of the extended functionality.

iii

Contents

Chapter

1 Introduction 1

1.1 Contextualization . 4

2 Speculative Execution 8

2.1 Introduction . 9

2.2 Background . 13

2.2.1 Out-of-Order Execution . 14

2.2.2 Speculative Execution . 14

2.2.3 Branch Prediction . 14

2.2.4 Spectre . 15

2.3 Architecture . 16

2.3.1 Threat Model . 17

2.3.2 Indirect jumps . 18

2.3.3 Limits of Speculative Execution . 20

2.3.4 Speculative Primitive . 25

2.4 Application Payloads . 25

2.4.1 Turing Machine . 26

2.4.2 Unpacking and Decryption . 27

2.4.3 Emulation . 29

iv

2.5 Triggers . 31

2.5.1 Benign Program Triggers . 31

2.5.2 Speculative Buffer Overflow . 32

2.5.3 Speculative Store Bypass . 33

2.6 Implementation and Evaluation . 34

2.6.1 Turing Machine . 34

2.6.2 AES Decryption . 35

2.6.3 Emulator . 37

2.6.4 OpenSSL Trigger . 38

2.7 Discussion . 40

2.7.1 Defenses . 40

2.7.2 Future Work . 43

2.8 Related Work . 44

2.8.1 Weird Machines . 44

2.8.2 Covert Channels . 45

2.8.3 Speculative Execution . 45

2.9 Conclusion . 46

3 Refraction Networking 47

3.1 Introduction . 48

3.2 Censorship Background . 49

3.2.1 Proxy Discovery . 49

3.2.2 Proxy Design . 51

3.2.3 Tor & Pluggable transports . 52

3.3 Refraction . 54

3.3.1 First Generation . 54

3.3.2 Routing Attacks . 55

v

3.3.3 Second Generation . 57

3.3.4 Current Generation . 58

3.4 Design . 62

3.4.1 Censorship Resistance . 62

3.5 Usage Trends & Analysis of a Censorship Event . 67

3.5.1 Active Censorship in Iran . 68

3.6 Operating Conjure in Production . 71

3.6.1 Minimizing Destructive Impact on the Larger System 71

3.6.2 Scalability . 73

3.7 Challenges & Open Questions Relating to Refraction 77

3.7.1 Routing Predictability . 77

3.7.2 Key Management . 78

3.7.3 Quantifying Censorship in IPv6 . 78

3.8 Conclusion . 79

4 Mechanizing WebAssembly for Censorship Circumvention 80

4.1 Introduction . 81

4.2 Related Work . 83

4.3 Design . 84

4.3.1 WATER Runtime Library . 84

4.3.2 WebAssembly Transport Module(WATM) . 85

4.3.3 Security Consideration . 86

4.4 Implementation . 86

4.4.1 Runtime Library . 86

4.4.2 WebAssembly Transport Module (WATM) 87

4.5 Evaluation . 88

4.5.1 Performance Metrics . 88

vi

4.6 Discussion . 90

4.6.1 Advantages and Limitations . 90

4.6.2 Future Work . 90

4.7 Conclusion . 91

5 Conclusion 92

5.1 ExSpectre: Achieving Non-Deterministic Behavior using Spectre 92

5.2 Refraction Networking . 93

5.3 Water: WebAssembly Transport Design . 93

Bibliography 95

Appendix

A WATER Supplemental Materials 105

A.1 Extending wasmtime C API binding . 105

A.2 Crypto Performance of WASM . 106

A.3 Implementing shadowsocks.wasm . 107

A.3.1 PoC version shadowsocks.wasm . 107

A.3.2 Porting from shadowsocks-rust . 107

A.3.3 Patching against GFW . 108

A.4 More Benchmark Results . 108

A.4.1 on Apple Macbook Pro 2021 . 109

vii

Tables

Table

2.1 Measurement Processor Features . 19

4.1 Latency and Throughput Comparison . 88

A.1 Crypto Performance - MacbookPro . 106

A.2 shadowsocks implementation code comparison . 107

A.3 MOSS check of diff on patching official v.s. WATER 108

A.4 Plain-Relay latency/throughput - CloudLab topology 109

A.5 Sender / Receiver (Mb/s) - MacbookPro . 110

viii

Figures

Figure

2.1 ExSpectre Architecture . 11

2.2 Cache Latency Measurements . 20

2.3 Speculative limits . 21

2.4 Impact of hyperthreading on speculation . 23

2.5 ExSpectre model . 26

2.6 Nested Speculation . 30

2.7 Speculative buffer overflow warm-up . 34

2.8 Speculative Bandwidth . 37

2.9 SPASM emulation model . 38

3.1 TapDance Deployment . 60

3.2 Conjure Deployment . 62

3.3 Conjure Bytes Transferred . 67

3.4 Conjure Usage by ASN . 68

3.5 Iran Censorship event . 69

3.6 Rising Edge of a Blocking Event . 70

3.7 During & after a Blocking Event . 70

3.8 Tap Traffic Filter Percent . 75

4.1 Water Flow Diagram . 82

ix

4.2 Connection Establishment Network Diagram . 85

A.1 Latency & Throughput Comparison with Vanilla-SS at Different Packet Sizes 110

Chapter 1

Introduction

This work investigates a design theme applied to systems and exploits in various contexts

at various scales. The design principle can be concisely described as such: complex systems often

support unintended behaviors beyond their original specification — these unintended behaviors

can be composed, and applied at scale to build systems with interesting properties in adversarial

contexts.

The behavior of complex systems is rarely binary or easily described; a stark example of the

simplicity of a machine capable of arbitrary computation beyond its design is the mov instruction

which, on its own, is turing complete [105]. This property makes unintended functionality possible,

in the case of the mov instruction this is the ability to compile a binary to be composed of the

single instruction type. We can then imagine the adversarial context where a malware analyst

must inspect a program to determine what capabilities the sample supports. If the binary has been

mutated using this alternative compiler to consist entirely of mov instructions the malware author

is able to leverage the complex machine of the single instruction which is simple in construction to

significantly complicate the analysts job as the behavior is much less certain in analysis. At the same

time, removing the mov instruction from the instruction set would be absurd as it is a fundamental

building block of modern processors. This concept of applying the unintended behavior of a system

in order to achieve a tertiary goal applies to many systems.

This work focuses on the application of these unintended behaviors to specific adversarial

situations within the system. This theme is examined in several contexts.

2

The first context that we consider is processor optimization and malware analysis. Modern

processors are deeply pipelined and often optimize for performance at every possible opportunity.

In general idle resources are a waste, and one way to prevent idle resources is to optimistically per-

form common operations based on past execution. This allows processors to take advantage of value

locality and speculate on things like conditional branches where execution would otherwise block.

However, current speculative execution is not ideal and the state that is impacted by the speculative

world is not completely rolled back when (for example) a conditional branch is speculated to be

taken but should not have executed based on a bounds check that was blocking. Leaking sensitive

information using speculative execution is the focus of the Spectre and meltdown attacks. In con-

trast, we operationalize speculative execution in order to Hide execution. Speculation provides an

opaque box in which arbitrary incremental computation can be completed with intermediate states

and gadgets automatically obfuscated once the processor terminates speculation. By composing

programs of minimal achievable units and intentionally speculating we can obfuscate the true func-

tionality of a binary in seemingly unreachable dead code, with control flow driven by difficult to

model speculative predictor state. In the operational context this type of speculative obfuscation is

difficult to defend against broadly as speculative units will inevitably miss in real world situations,

and removing speculation all-together introduces a significant performance penalty.

From there we take a step back to examine an application of this design theme for good on the

internet. Proxies are used to circumvent censorship, and in turn censors attempt to discover and

block proxies in order to prevent this circumvention. The ensuing game of cat-and-mouse caused by

increasingly stealthy proxy protocols and increasingly vigilant censors is generally constrained by a

censors willingness to over-block (break connections for benign traffic) and ability to censor at scale.

In order to increase the difficulty along these two parameters refraction networking transitions proxy

logic into the middle of the network by partnering with ISPs. This shifts the dynamic of routing

and increases the cost of blocking. Refraction as an unintended functionality of internet routing has

seen ISP scale deployments for first the TapDance protocol and now its spiritual successor, Conjure.

We focus our investigation of the Conjure protocol around the now production scale deployment

3

and the challenges that arise when a system originally constructed out of unintended functionality

in the TCP/IP stack is scaled to millions of users and multiple ISPs.

When considering the effectiveness of collateral centered design in the context of censorship

circumvention we can look at more than the IP layer. In the third chapter we address the WHAT

of protocol censorship. When censors actively monitor traffic for signs of circumvention they are

looking for signs that a protocol either stands out, or is not behaving as expected. This allows

them to single out perceived illicit traffic and block it. However, there is almost never a fool-proof

way to identify a protocol as illicit, and mistakes result in benign traffic being blocked. These

false positives can have a significant negative impact on online commerce and communication.

This provides an incentive for censors to be conservative in their blocking, except in extreme cases.

The final chapter explores a pluggable transport design that attempts to lower the barrier to

deploying new circumvention protocols. By leveraging the lateral transferability of WebAssembly

we implement a proof of concept runtime that could allow transports to be implemented once and

deployed to clients of multiple proxies, in multiple languages, on multiple platforms all without

rebuilding or redeploying applications. The agility to deploy new circumvention strategies at scale

is a significant step towards raising the collateral cost of censorship as circumventors can adapt

to blocking faster, transitioning protocols to stay online longer. This forces censors to be more

aggressive in the protocols that they block, increasing the collateral cost of censorship.

We find that in practice the collateral centered design principle is effective in attempts to

withstand adversarial action, usually at the cost of performance and complexity. In the case

of speculative obfuscation, the cost of executing speculative payloads hidden in dead code is a

significant performance penalty. In exchange for this performance penalty we are able to hide the

true functionality of a binary from all existing reverse engineering and binary analysis techniques.

Even in the presence of all current speculative execution mitigations ExSpectre is still able to use

the direct branch predictor (BCB) to speculatively obfuscate the true functionality of a binary.

In the case of refraction networking, the cost of deploying and maintaining a constellation of

refraction stations is in the complexity of the system that handles high volumes of tap traffic

4

and the connection establishment given the two stage connection process. In exchange for this

complexity we are able to provide one of the largest censorship circumvention networks available

from the perspective of endpoint IP addresses. Clients currently access around 120k and 10k unique

IPv4 and IPv6 addresses respectively every day. Water, the most recent collateral centered design

presented in this work, serves to extend the cost for censors along a different axis. Once again

the cost to the client is performance as things like cryptographic primitives, that would typically

have hardware support, are currently implemented in software lowering steady state performance

when using the WebAssembly runtime. In exchange for this performance penalty we are able to

dynamically deploy new censorship circumvention strategies. In each of these contexts we emphasize

the transition from theory and proposal to novel application and deployment and the benefits and

challenges that arise.

1.1 Contextualization

An aspect of all research that often gets omitted is the context in which the work originated.

In this brief section I introduce myself as an author and researcher, and provide some context about

the events that have motivated several of the underlying themes of this work.

About the Author — As an academic researcher educated in the United States, I have been

fortunate in my ability to pursue research without fear of censorship or retribution. A majority of

my education has taken place in the Western and South-Western portions of the United States, and

I would like to acknowledge the indigenous peoples of these places that have been so influential to

me throughout that process – the Navajo, Ute, Arapaho, and Tiwa nations. I have been fortunate

to have supportive and talented collaborators and mentors who have played a significant role in

shaping my research and career. In addition, as a caucasian, male identifying, American citizen I

have been afforded many privileges that have allowed me to freely choose my research topics and

pursue them removed from any form of classification. I am grateful for these opportunities and

hope to use my position in support of free and open communication on the internet.

While not a complete account, the following are some of the major events impacting the

5

shape and accessibility of the internet for various peoples in the time since I began my graduate

program. These events serve as a backdrop, in a way demonstrating the importance of the design

principle that I explore in the work that follows.

Murder of Jamal Khashoggi In October 2018 a US-based journalist and critic of Saudi Ara-

bia’s government Jamal Khashoggi was murdered in the Saudi embassy in Istanbul. This politically

motivated death was alleged to have come from high ranking officials, and had a stifling message to

journalists critical of the Royal Family. Hong Kong protests Centering around legislation amending

a “Mutual Legal Assistance in Criminal Matters” bill expanding extradition at the governments dis-

cretion to countries including mainland China, citizens of Hong Kong took to the streets en masse.

Escalation around alleged police brutality incidents in response violent protest behavior extended

the original movement for almost two years. Throughout this time the Chinese government actively

censored any content covering the protests. 2020 Coronavirus pandemic An epidemic starting in

late 2019 grew into a global pandemic by early 2020. With early uncertainty about the nature of the

virus and the potential timelines for a vaccine, isolation became the primary means of prevention.

This lead to a significant shift in the way that people interact and collaborate. The internet became

the primary means of communication driving a boom in video conferencing and remote work tech-

nologies. In some countries the isolation based response was mandated as lock-downs and curfews.

Several countries actively censored information about the severity of the pandemic and criticism

around the government response. Turkmenistan protests A rare instance of public protest in au-

thoritarian Turkmenistan occurred in may of 2020 after significant natural destruction and a denial

centered response to the COVID-19 pandemic. Discontent over the lack of government response

or support lead to anti-government rallies. The government was quick responded to with arrests

and large scale internet censorship. George Floyd Protests In late May 2020 George Floyd was

murdered by police officers in Minneapolis, Minnesota. This lead to a broad movement of protests

across the United States against excessive use of force and qualified immunity for police officers.

These protests were met with a significant police response including the alleged use of surveillance

technologies like cellular triangulation and IMSI catchers to track and identify organizers. Myan-

6

mar Coup and subsequent protests In February 2021 members of the ruling National League for

Democracy (NLD) party in Myanmar were deposed by the commander in chief of the armed forces.

Subsequent protests were met with large scale network and social media blackouts. Cuban protests

spring 2021 Economic downturn caused by new sanctions and significantly reduced tourism due

to COVID-19 lead to nation wide protests and censorship of the recently rolled out (government

controlled) internet service. Russian invasion of Ukraine In an escalation of the ongoing conflict

between Russia and Ukraine, Russia invaded Ukraine in February 2022 after annexing Crimea in

2014. Along with this came significant censorship of the internet and social media both in occupied

Ukraine and Russia itself. 2021 Iranian Presidential Elections In June 2021 Ebrahim Raisi was

elected president of Iran after an election that organizations such as Human Rights Watch called

a “sham”. As is typical of Iranian elections, the government took stringent measures to prevent

the spread of information and communication online leading up to and in the immediate wake of

the election. Russian 2021 Legislative Elections Rife with controversy, the 2021 Russian legisla-

tive elections suffered from accusations of fraud including ballot stuffing and vote manipulation

involving a smart voting app. At the same time members of the opposition party were barred or

disqualified from running including allies of the opposition leader Alexei Navalny. Pressure from

the government media authority, Roskomnadzor, forced policy changes and app removals from both

Apple and Google in an attempt to prevent widespread polling. Kazakh protests 2022 Amidst soar-

ing petroleum prices and income inequality, protests erupted in Kazakhstan in January 2022. As

part of a government response that included the deployment of military forces from neighboring

countries, the government instituted restrictions on internet access. This culminated in almost a

week of rolling nationwide internet blackouts. Further reverberations passed into Turkmenistan

where authorities afraid of anti-government action deployed police forces to the streets to enforce

a curfew and (reportedly) randomly inspect cellphones. The death of Mahsa Amini In Septem-

ber 2022, 22 year old Mahsa Amini was taken into custody by the Iranian morality police on the

grounds of wearing an improper hijab. She died under suspicious circumstances while in custody,

and the Iranian government routinely refused to share police body camera footage of the incident

7

or allow access to her body, though images of her injuries leaked online were consistent with a

severe beating. This sparked protests as well as counter protests across the country against the

continued headscarf laws. After only two days of protests including extensive social media coverage

the government instituted rolling nationwide internet blackouts. Protests have continued on and

off in the time since. Chinese Sitong bridge protest As a political statement during the week before

to the 20th National Congress of the CCP an unnamed man staged a protest on the Sitong bridge

in Beijing, hanging banners critical of communist party leadership and lighting a fire to draw at-

tention before being arrested. This became a viral event on social media, and was quickly censored

by the Chinese government, internet providers, and social media platforms. This has gained the

unnamed man notoriety similar to the “Tank Man” of the 1989 Tiananmen Square protests. 20th

National Congress of the CCP Xi Jinping ran for and was elected to an unprecedented and contro-

versial third term as CCP General Secretary in October 2022. This election drew criticism both

at home and abroad, though publicized criticism was actively censored within the country. Israel

palestine conflict In November 2023 after an apparent aggressive attack on Israel by Hamas forces,

the government declared a state of emergency and lead a ground based force to take active martial

control of the region. As Israel is the direct purveyor of internet access in Palestine and does not

have the cleanest history with respect to censorship to begin with, this has lead to widespread

internet blackouts for palestinian people attempting to evacuate and avoid the conflict. Internet

Access Legislation Numerous countries have enacted new legal frameworks in the name of securing

against obscenity and illegal activity online. To name only a few so as to provide example — The

Russian Sovereign Internet Law passed in 2019 mandates surveillance and the power to partition

the country from the global internet. India’s IT Rules passed in 2021 shifts liability to hosting

providers for content on their platforms, such that companies like Whatsapp and Twitter are mon-

etarily liable for obscenity or any illegal activity as defined by the Indian government. And finally

the United Kingdom’s 2023 Online Safety Act which mandates that online platforms establish the

infrastructure to prevent children from seeing harmful or obscene content as defined by the british

government.

Chapter 2

Speculative Execution

Modern processors are extremely complex with multiple highly optimized subsystems working

in tandem. One of the primary motivators for processor development is execution speed. In pursuit

of this end several subsystems have incorporated predictive mechanisms to leverage statistical simi-

larity in order to opportunistically allocate resources where they would otherwise be underutilized.

This allows processors to take advantage of value locality for things like branch prediction and

memory prefetching. This strategy of performing work before it is needed based on probabilistic

history provides a significant performance gain in the common case because programs do tend to

follow low order patterns, provide value locality, and repeat significant portions of control flow.

However, in their failure modes this “speculative execution” has extensive and severe unintended

functionality.

The Spectre and Meltdown attacks exposed this class of flaws in modern CPU designs, demon-

strating that speculative execution allows an attacker to exfiltrate data from sensitive programs.

By coercing a processor into perform computation that would otherwise not occur using speculative

execution, they show that it is possible to leak the sensitive portions of memory via a side channels

to an attacker.

In this chapter we operationalize the failure modes of speculation in a new direction, leverag-

ing speculative execution in order to hide malware from both static and dynamic analysis. Using

this technique, critical portions of a malicious program’s computation can be shielded from view,

such that even a debugger following an instruction-level trace of the program cannot tell how its

9

results were computed. We introduce ExSpectre, which compiles arbitrary malicious code into a

seemingly-benign payload binary. When a separate trigger program runs on the same machine, it

mistrains the CPU’s branch predictor, causing the payload program to speculatively execute its

malicious payload, which communicates speculative results back to the rest of the payload program

to change its real-world behavior.

We demonstrate that through structured application of the unintended behavior of highly

optimized processor subsystems it is possible to perform arbitrary computation evading all exist-

ing reverse engineering and binary analysis techniques. The true functionality of the program is

contained in seemingly unreachable dead code, and its control flow driven externally by potentially

any other program(s) running at the same time. In the adversarial context of malware analy-

sis, ExSpectre allows malware authors to leverage the transitory nature and opaque behavior of

speculation against analysts.

2.1 Introduction

Modern CPU designs use speculative execution to maintain high instruction throughput,

with the goal of improving performance. In speculative execution, CPUs execute likely future

instructions while they wait for other slower instructions to complete. When the CPU’s guess of

future instructions is correct, the benefit is faster execution performance. When its guess is wrong,

the CPU simply discards the speculated results and continues executing along the true path.

Previously, it was assumed that speculative execution results remain invisible if discarded,

as careful CPU design maintains strict separation between speculative results and updates to ar-

chitectural state. However, recent research has revealed side channels that violate this separa-

tion, and researchers have demonstrated ways to exfiltrate results from speculative computation.

Most notably, the Spectre vulnerability allows attackers to leak information from purposefully mis-

speculated branches in a victim process [77]. The Meltdown vulnerability uses speculative results

of an unauthorized memory read to sidestep page faults and leak protected memory from the ker-

nel [84]. Both of these vulnerabilities focus on extracting secret data from a process or operating

10

system. Recent follow-up work has revealed other Spectre “variants”, including speculative buffer

overflows, speculative store bypass, and using alternative side channels besides the cache [76, 87].

In addition, several attacks have leveraged Spectre to attack Intel’s SGX [18, 95, 16], and perform

remote leakage attacks [110].

Herein we explore another attack enabled by speculative execution: ExSpectre, which hides

computation within the “speculative world”. Taking advantage of the CPU’s speculation to

secretly perform computation, we can produce binaries that thwart existing reverse engineering

techniques. Because the speculative parts of a program never “truly” execute, we can hide program

functionality in the unreachable dead code in a program. Even a full instruction trace, captured by a

hardware debugger or software emulator, will be unable to capture the logic performed speculatively.

This technique could lead to sophisticated malware that hides its behavior from both static and

dynamic analysis.

Existing malware use several techniques to evade detection and make it difficult for analysts

to determine payload behavior of reported malware. For example, binary packers or crypters

encode an executable payload as data that must be “unpacked” at runtime, making it difficult

to tell statically what a program will do [62]. Malware may also use triggers that only run the

payload when certain conditions are present, preventing it from executing when it is inside an

analysis sandbox or debugger [8, 106].

However, with some effort, these existing malware techniques can be defeated. Analysts

can use dynamic execution to unpack malware and reveal its behavior [8], and can use symbolic

execution or code coverage fuzzers to determine the inputs or triggers that will reveal malicious

behavior [90, 109, 123, 33].

ExSpectre provides a new technique to malware authors, allowing them to hide program func-

tionality in code that appears to not execute at runtime by leveraging Spectre as a feature [61]. This

technique defeats existing static and dynamic analysis, making it especially difficult for malware

analysts to determine what a binary will do.

11

PayloadTrigger

jmp *%rax
...
...
retq
...
jmp *%rbx

call (*fn_ptr)

target_fn

cache_timing

1

2

3

4 CPU cache

Legend
Actual Exec. Path
Speculative Exec. Path Data Exfiltration

Data Utilization

Extra Process BarrierSpeculative State Barrier

Figure 2.1: ExSpectre — Both the trigger and payload binaries perform the same initial series of
indirect jumps (Step 1), with tlhe goal of having the trigger program (mis)train the branch predictor.
In the payload program, fn_ptr has been set to point to the cache_timing function but is flushed
from cache. Following the pattern in the trigger program, the branch predictor mis-predicts the
jump (Step 2) and instead speculatively jumps to target_fn (red line). target_fn briefly executes
speculatively (Step 3), until the fn_ptr is resolved and the process redirects computation to the
(correct) cache_timing function (Step 4). This function then measures information computed in
the speculative target_fn by measuring a covert cache side channel.

12

At a high level, ExSpectre consists of two parts: a payload program, and a trigger. The

trigger can take the form of a special input (as in typical malware), or an unrelated program

running on the same system. When run without the trigger, the payload program executes a series

of benign operations, and measures a cache-based side channel1 . Once the trigger activates—either

by the attacker providing specially crafted input, or the trigger program running—it causes the

CPU to briefly speculatively execute from a new target location inside the payload program.

This target location can be in a region that is neither read nor executed normally by the pay-

load program, making this logic effectively dead code to any static or dynamic reachability analysis.

After the CPU discovers the mis-speculation at the target location, it will discard the results and

continue executing from the correct destination. However, this still gives the payload program

a limited speculative window where it can perform arbitrary computation, and can communicate

results back to the “real world” via a side channel. Figure 2.1 shows the variant of ExSpectre

that uses a trigger program to mis-train the CPU’s indirect branch predictor, causing the payload

program to briefly execute a hidden target function speculatively.

It is also possible for a trigger program to be a benign program already on the victim’s

computer. We show this using the OpenSSL library as a benign trigger program in Section 2.5.1,

activating a malicious payload program when an adversary repeatedly connects to the infected

OpenSSL server using a TLS connection with a specific cipher suite.

We also show it is possible to obviate the trigger program entirely, and instead use trigger

inputs, which are data inputs the attacker provides directly to the payload, causing the CPU to

speculatively execute at the attacker’s chosen address. Unlike traditional malware input triggers,

these inputs cannot be inferred from the payload binary using static analysis or symbolic execution,

as the logic these triggers activate happen speculatively in the CPU, which existing analysis tools

do not model. We describe this technique in more detail in Section 2.5.2.

Simulating or modelling the speculative execution path is a difficult task for a program an-

alyst hoping to reverse engineer an ExSpectre binary. First, the analyst must reverse engineer
1 We note that other side channels could be used in place of a cache

13

and accurately model the closed-source proprietary components of the target CPU, including the

branch predictor, cache hierarchy, out-of-order execution, and hyperthreading, as well as taking

into account the operating system’s process scheduling algorithm. In contrast, the ExSpectre au-

thor only has to use a partial model of these components and produce binaries that take advantage

of them, while the analyst’s model must be complete to capture all potential ExSpectre variants.

Second, the analyst must run all potential trigger programs or inputs through the simulator, in-

cluding benign programs with real world inputs. Both of these contribute to a time-consuming and

expensive endeavor for would-be analysts, giving the attacker a significant advantage.

In order to study the potential of ExSpectre, we implement several example payload pro-

grams and trigger variants, and evaluate their performance. We find that a payload program’s

speculative window is mainly limited by the CPU’s reorder buffer, which allows us to execute up

to 200 instructions speculatively on modern Intel CPUs. While brief, we show how to perform

execution in short steps, communicating intermediate results back to the “real world” part of the

payload program. Using this technique, we demonstrate implementing a universal Turing machine

(demonstrating arbitrary computation), a custom instruction set architecture that fits within the

constraints of speculative execution, and show the ability to perform AES decryption using AES-NI

instructions.

Using these building blocks, we demonstrate the practicality of hiding arbitrary computation

by implementing a reverse shell in our speculative instruction set, with instructions decrypted in

the speculative world. We show that this simple payload is able to perform several system calls in

a reasonable time, ultimately launching a dial-back TCP shell in just over 2 milliseconds after the

trigger is present.

2.2 Background

Modern CPU designs employ a wide range of tricks in order to maximize performance. In

this section, we provide preliminary background as they are relevant to our system, as well as a

brief summary of the Spectre vulnerability.

14

2.2.1 Out-of-Order Execution

Many CPUs attempt to keep the pipeline full by executing instructions out of order, with

the CPU allowing future instructions to be worked on and executed while it waits for slower or

stalled instructions to complete. To maintain correctness and the original (Von Neumann) ordering,

instructions are tracked in a reorder buffer (ROB), which keeps the order of instructions as they

are worked on out of order. Instructions are retired from the ROB when they are completed and

there are no previous instructions that have yet to retire. Upon retiring, an instruction’s results

are committed to the architectural state of the CPU. Thus, the ROB ensures that the program (or

debugger) view of the CPU state always updates in program execution order, despite out of order

execution.

2.2.2 Speculative Execution

CPUs also attempt to keep their pipeline full by predicting the path of execution. For

example, a program may contain a branch that depends on a result from a prior slow instruction.

Rather than wait for the result, the CPU can speculatively execute instructions down one

of the paths of a branch, storing the results of the speculative instructions in the ROB. If the

guess of the branch target turns out to be correct, the CPU can quickly retire all the instructions

it has speculatively executed while waiting. If the guess is incorrect, the CPU must discard the

(incorrectly) speculated instructions from the ROB, and continue executing from the correct branch

target.

2.2.3 Branch Prediction

When a CPU mispredicts a branch, the speculative execution results are discarded, costing the

CPU several cycles as the pipeline is flushed. To minimize this, CPUs employ branch predictors

that attempt to guess the path of execution. Branch predictors maintain a short history of previous

branch targets for a particular branch (e.g. whether a certain branch is frequently taken or not

taken), and use this to inform the CPU’s guess for speculative execution.

15

There are two kinds of branches a CPU handles: direct and indirect. A direct branch may

either jump to a provided address or continue executing straight through depending on the state of

the CPU (e.g. condition registers). While there are only two statically-known targets for a direct

branch, the CPU may not know if the branch is taken or not until preceding instructions retire. An

indirect branch is always taken, but its address is determined by the value of a register or memory

address. Direct branches are typically used for control flow such as if or for/while statements,

while indirect branches are used for function pointers, class methods, or case statements.

2.2.4 Spectre

In early 2018, researchers revealed the Spectre vulnerability, which allows an attacker to leak

information from a victim program [77, 65, 85]. Spectre uses the fact that speculative execution

can influence system state via side channel. In Spectre, an attacker mistrains the branch predictor

of a CPU running a victim program by providing inputs to it. Once mistrained, the attacker then

sends a new input that will cause a different in-order execution path. However, because the CPU’s

branch predictor has been mistrained, it will still speculatively execute the previous path.

Consider the following code snippet from the Spectre paper [77]:

i f (x < array1_s ize)

y = array2 [array1 [x] ∗ 2 5 6] ;

The if statement correctly protects an out-of-bounds reads from array1. But if the branch

predictor makes an incorrect guess on the branch’s direction and speculatively executes inside the

if statement, it may cause a read beyond the boundary of array1. The result of this will then

(speculatively) be multiplied by 256 and used as an index into array2. Although the CPU will not

commit the speculative update to y, it will still issue a memory read to array2[array1[x]*256],

which will be cached. Importantly, even after the CPU realizes the branch misprediction, it does not

rollback the state of the cache, as this does not directly influence program correctness. However, the

set of cached values is observable to the program via a side-channel: by timing reads to array2[i],

16

the fastest read will reveal the speculative value of array1[x]*256, for any value of x. An attacker

that is able to perform such a side-channel inference on the cache can learn the speculative result

of an out-of-bounds read from array1.

Spectre can also be applied to indirect branches. Branch predictors use the history of previous

branches to predict the destination of an indirect jump when the destination is not yet known. For

direct branches, only one of two destinations (taken or not taken) are possible to speculatively

execute. But for indirect branches, a mistrained branch predictor can potentially be coerced into

speculatively executing from any target instruction in the binary.

We take advantage of the behavior of indirect branch prediction to hide the location of our

speculative computation.

2.3 Architecture

ExSpectre malware is comprised of two independent pieces: a payload program, and a trigger.

The payload, and some form of the trigger, must be installed on the victim’s computer (e.g. via

trojan, remote exploit, or phishing). A running payload performs innocuous operations while

waiting for the trigger to become present.

One form the trigger can take is another local program that interacts with the payload via

the indirect branch predictor. In this case, both programs must run on the same physical CPU.

We note that this constraint is not a significant burden, as programs can either use taskset, or, if

not available, run multiple instances or wait for the OS scheduler to execute both programs on the

same core.

At a high level, the trigger program performs a series of indirect jumps in a loop, training

the branch predictor to this pattern. Meanwhile, the payload program performs a subset of this

jump pattern, then forces the CPU to speculate by stalling the resolution of an indirect branch via

a slow memory read. The CPU will (mistakenly) predict the jump to follow the pattern performed

by the trigger program, and speculatively execute that destination in the payload program.

The trigger can also take the form of a special input to the payload program, rather than

17

a separate program. In this case, the payload program parses input data and performs innocuous

operations with it. Once the trigger input is provided, it causes the program to speculatively

overflow a buffer, despite correct bounds checks in the program. The speculative buffer overflow

(described in Section 2.5.2) causes the program to speculatively execute at an address chosen by

the trigger input and controlled by the attacker.

2.3.1 Threat Model

We assume a scenario where an adversary wishes to hide or obscure the behavior of a malicious

program (malware) from an analyst attempting to reverse engineer it. We note this is distinct

from the goals of evading malware detection, where malware escapes classification by an anti-virus

or other automated tool. While we believe ExSpectre could also be used to make automated

detection more difficult, our main focus is on reverse engineer resistance, useful for evading manual

classification concerned with malware behavior. For anti-virus evasion, we refer the reader to several

existing techniques that are sufficient to defeat existing anti-virus systems [70, 94, 101, 116, 120].

We assume the adversary is able to install binaries on the target machine (e.g. via a trojan

or remote exploitation), and the analyst is attempting to determine what the malware will do using

traditional debugging tools. We assume the analyst may be aware that speculative execution is

used to obfuscate behavior, but does not have special-purpose hardware that allows introspection

of the CPU’s speculative state. This assumption is realistic, as modern processors do not allow

developers or other users to directly interact with proprietary CPU optimizations and features.

We further assume that the malware has a specific trigger that the analyst is not privy to,

and the adversary can influence. In our examples, this trigger is often behavior exhibited by some

other (potentially benign) process running on the same system as the malware. As the adversary is

able to control when such a trigger is deployed (potentially remotely), the analyst will not be able

to observe or force this trigger to happen at will. We emphasize that while this may also be true for

existing trigger-based malware, analysts can often reverse engineer the trigger out of the malware,

for example by observing control flow within the malware and using adaptive fuzzers [142, 114] to

18

generate inputs that explore other execution paths of the binary. In contrast, ExSpectre malware’s

trigger influences behavior of the payload program speculatively, making it effectively invisible to

the analyst. As with typical malware, the analyst may attempt to reverse engineer the trigger to

reveal the malware’s behavior, but we will show (in Section 2.4.2.1) how this type of analysis can

be defeated.

2.3.2 Indirect jumps

In this subsection, we will describe the trigger program variant, and defer discussion on how

input data can be used as a speculative trigger to Section 2.5.2.

In ExSpectre, we cause the CPU to mis-speculate the destination of an indirect branch in

the payload program, causing it to speculatively execute instructions that are never truly executed.

We term the destination where speculation begins the speculative entry point. ExSpectre

uses indirect jumps to allow speculative execution from any instruction in the payload process’

address space. Because it can jump to any instruction, the malware analyst has a difficult task in

determining where a payload program’s speculative entry point is.

In fact, the location of this entry point is not determined by the payload program, but rather

the corresponding trigger program. This means that with only the payload program, an analyst

does not posses enough information to find the speculative entry point.

Indirect branch predictors allow the CPU to predict the destination address of a branch based

solely off its source address and a brief history of previous branch sources and destinations. While

the inner-working details of modern CPU branch predictors are proprietary, it is possible to reverse

engineer parts of their behavior, which we do for ExSpectre.

We observe that Intel CPUs consider three types of x86_64 indirect branches: retq, callq *%rax,

and jmpq *%rax2 . We created a simple trigger program that performs a series of indirect branches

using jmpq *%rax instructions. Between each jump, we incremented %rax accordingly to continue

on to the next jump. After these jumps, we load a function pointer into %rax and do a final indirect
2 other general purpose registers besides %rax can be used as well

19

Processor Re-
leased

Micro-
arch.

Nested
Spec.

Indirect
jumps

µ-ops
(nop)

Intel Xeon CPU E3-1276 v3 2014 Haswell 26 178
Intel Core i5-7200U 2016 Skylake X 26 220
Intel Xeon CPU E3-1270 v6 2017 Skylake X 28 220
AMD EPYC 7251 2017 Ryzen 4 178

Table 2.1: Processor features— We analyzed the capability of ExSpectre on three Intel proces-
sors and one AMD. Both Skylake processors were capable of nested speculation (Section 2.3.3.5).
Indirect jumps is the number of common training indirect jumps needed in the trigger program to
reliably (> 95% of the time) coerce the payload program to follow the pattern and jump to the
speculative entry point specified in the trigger program. µ-ops is the upper bound of µ-ops that
can be performed speculatively.

branch using callq *%rax. In our trigger, we perform these jumps repeatedly in a loop.

In our payload program, we first perform the same indirect jumps. We ensure the source and

destination addresses of these jumps is the same as in the trigger program by manually defining

their containing function at a fixed address inside a linker script. We also do the final indirect call

to a function pointer, but with two differences. First, the destination in the function pointer is a

different address, and second, the memory location of the function pointer itself is uncached. This

forces the CPU to predict the destination of the final indirect call while it waits for the function

pointer to load from memory. Due to the similar history of branches with the trigger program, the

CPU will (incorrectly) predict the destination to be the same as the one in the trigger program,

which determines the speculative entry point for the payload. Even though the in-order execution

of payload program never executes or even reads from this address, the CPU will briefly execute

instructions there speculatively.

In Table 2.1 we analyze the number of necessary training indirect jumps various processors

require to consistently (> 95%) have the payload program enter the speculative world at the chosen

speculative entry point in the trigger program. We found that 28 indirect jumps was sufficient for

our trigger program on each of the test processors to reliably ensure the speculative execution began

at the correct speculative entry point.

20

Figure 2.2: Cache latency — Cumulative distribution function of the cache hit and miss latency
for an Intel Xeon-1270 and AMD Epyc 7251. If a cache miss is used to force CPU speculation,
the CPU must wait at least 300-800 cycles before the speculated branch can be resolved. However,
we find the CPU is occasionally limited to far fewer instructions speculatively, suggesting another
limit is at play.

Eventually, the de-reference of the uncached function pointer in the payload program will

be resolved, and the CPU will recognize it has incorrectly predicted the destination of its callq

instruction. The results from the speculative entry point instructions will be discarded, and the

CPU will continue executing from the correct destination. However, the speculative code can change

what is loaded into the cache based on its computation, allowing it to covertly communicate its

results to the “real world” program.

2.3.3 Limits of Speculative Execution

We performed several experiments to determine how much computation can be performed

speculatively, as well as what components are responsible for the limit. We report results from

our experiments on an Intel Xeon-1270 (Sandy Bridge), though we note we found similar results

across other Intel processor generations, including an i5-7200U (Kaby Lake), an i5-4300U (mobile

Haswell), an i5-4590 (desktop Haswell), as well as an AMD EPYC 7251.

2.3.3.1 Cache Miss Duration

When executing instructions speculatively we rely on a memory load of a function pointer

from uncached memory. Thus, one limit on our computation comes in the form of the time it takes

for the memory read to return with a result (and for the CPU to determine the result was mis-

21

Figure 2.3: Speculative limits — We placed a memory read after an increasing number of (specu-
latively executed) instructions and measured the fraction of times the loaded value was subsequently
in cache. This tells us the upper bound of instructions we can reliably execute speculatively. We
identify two limitations on the speculative lifetime: cache miss latency resolving the speculative
branch, and the CPU’s reorder buffer (ROB) size. We observe that different instructions have
varying speculative limits: for example, a 32-bit idiv can complete only 18 instructions, as each
instruction inserts 10 µ-ops into the ROB, while cheaper instructions that use fewer µ-ops can
execute more instructions.

predicted). We measured the number of cycles a cache miss takes to return by artificially evicting

an item from cache and timing reads from its address. Figure 2.2 shows the CDF of cycles taken.

In the typical case, an evicted item takes approximately 300 clock cycles to load from the Level 3

cache (L3), which would allow a limit of roughly 300 speculative instructions (depending on specific

cycles per instruction (CPI)) to be executed during that time. We note that when an item is not in

L3, it takes considerably longer to load, in theory allowing for thousands of speculative instructions

in a significant fraction of runs.

2.3.3.2 Reorder Buffer Capacity

We also measured the capacity of the reorder buffer (ROB) using a method outlined by [133].

We measure the maximum number of cycles taken to perform two uncached memory reads, and vary

the number of filler instructions between them. If the number of filler instructions is small, both

memory reads will fit inside the ROB, and it can issue their memory reads in parallel. However, if

the filler instructions fill the ROB, the second memory read will have to wait for the first to return

before it can be issued, causing a noticeable step increase in the cycle count. Figure 2.3 shows this

step occurs at approximately 220 instructions for our processor, suggesting a hard upper bound

regardless of how long the cache miss takes to resolve.

22

2.3.3.3 Speculative Instruction Capacity

To verify the upper limit of speculative instructions, we instrumented our trigger and payload

programs to test a simple gadget of variable-length before it communicated a signal to the real world

via a cache side channel. If the cache side channel revealed no signal in the real world, then we

know the speculative execution did not make it to the signal instructions before the mis-speculated

branch was resolved.

We also tested whether instruction complexity or data dependencies impact the number of

instructions that can be completed. We find that data dependencies and instruction complexity

both have an impact on the number of instructions that can be executed. Instruction complexity is

determined by the number of µ-ops that the instruction uses, which appears to be what is tracked

in the ROB. For instance, on our Skylake architecture, the 64-bit idiv instruction takes 57 µ-ops,

and we can execute up to 3 of them in the speculative world. Meanwhile, we can execute up to 18

32-bit idiv instructions, which each take 10 µ-ops [46]. This suggest we can execute on the order

of 175 µ-ops before the speculative world expires.

Most notably instructions that use the extended x86 registers are still valid within the spec-

ulative context. Specifically, Intel’s hardware accelerated AES-NI encryption and decryption in-

structions, which each use 128-bit registers. As shown in Figure 2.3, speculative environments can

complete a significant number of AES rounds—over 100 rounds in our experiments, more than

enough to decrypt a full block using simple AES modes (e.g. AES-CTR). We investigate the use

of AES instructions in the speculative environment further in Sections 2.4.2.

We find that when executing speculatively, the number of instructions completed has a soft

limit and a hard limit. The duration in cycles applies a soft limit, as shown in Figure 2.3 with

the idiv (32-bit), mul, and aesdec instructions. As we attempt to execute more instructions

speculatively, we see a steep drop in in the fraction of trials that are able to signal via the cache-side

channel. However, this speculative hit fraction does not drop to zero until the later hard limit,

imposed by the number of CPU micro-operations (µ-ops) composing those instructions. Figure 2.3

23

Figure 2.4: Hyperthreading — We measured the impact hyperthreading has on speculative exe-
cution. Trigger and payload programs running on the same logical core require a context switch to
alternate processes, but allows each to have full utilization of the ROB and execution units when
they run. Running the programs on parity hyperthreads (denoted by (P)) allows them to run
simultaneously without context switching, but we observe this configuration effectively halves the
amount that each program can speculatively execute, suggesting that hyperthreads share parts of
the ROB or execution units.

demonstrates that the number of µ-ops of the instructions is the major limiting factor that define

an upper bound of approximately 150 instructions3 .

2.3.3.4 Hyperthreading

When running our tests, we assign the payload and trigger program to the same core using

taskset. We note in the absence of taskset, we can run multiple instances of trigger programs to

occupy all cores, eventually having the payload program and trigger program become co-resident.

We also explore using hyperthreading, where the CPU presents two virtual cores for each

physical core, allowing the OS to schedule programs to each simultaneously. In effect, this can

cause the interleaving of instructions between two programs to be much finer-grained: at the

instruction level rather than changing only at the OS-controlled context switch. We find that this

has two effects on speculative programs. First, the finer-grained interleaving allows for a higher

hit rate from the cache, suggesting that each indirect jump pattern is more likely to result in

speculatively executing from the intended position. Second, because the physical CPU is being
3 While nop is able to execute up to the full 220 ROB capacity, instructions that do useful work (and/or use multiple µ-ops)

cannot reach this limit. In addition, data dependency and execution unit availability add further complications to modelling
the exact number of instructions that can be executed speculatively.

24

shared, it effectively halves the number of instructions that can be run in the speculative context.

Figure 2.4 shows the instructions that can be run when running trigger and payload on a single

core vs. a pair of hyperthreaded cores.

We note that Single Thread Indirect Branch Predictors (STIBP) have been implemented in

most environments to prevent cross thread branch predictor interference. While this does remove

the ExSpectre trigger’s influence in scenarios where a process runs on an isolated cpu, in most

modern environments tasks are scheduled to all available processors. This means that the trigger

and payload will be coresident eventually, allowing progress to continue.

2.3.3.5 Nested Speculation

We explore the ability for the CPU to “double speculate”, where a second stalled indirect

jump while the CPU is already speculating causes it to predict the target and speculate a second

time. For instance, suppose a payload program truly jumps to target A, but the CPU is mistrained

by a trigger program that jumps to B, thus causing the payload program to speculatively execute

at B. At B, suppose there is a second indirect jump, perhaps using the same register as the first

jump (which has still not resolved). If the trigger program jumps to C, the payload program may

speculate a second time and continue speculative execution at C. Figure 2.6 demonstrates Nested

Speculation in action.

We find that not all Intel CPUs support nested speculation. For example, it appears Haswell

chips do not speculate while already speculating, but nonetheless support non-nested ExSpectre.

Both Sandy Bridge (which preceded Haswell) and Kaby Lake (which followed Haswell) support

nested speculation. We find that when a CPU does support nested speculation, there appears to

be no limit to nested depth besides the speculative instruction limit. We use a 16-deep nested

speculation in Section 2.6.2 to protect speculative decryption keys from reverse engineering.

25

2.3.4 Speculative Primitive

We summarize our findings into a speculative primitive, which allows our payload pro-

gram to speculatively (and covertly) perform on the order of 100 arbitrary instructions while an

accompanying trigger program is running, and communicate a short (e.g. single byte) result to the

real world via a cache side channel. These speculative instructions are able to read from any cpu

state accessible to the process in the real world including memory and registers, but they cannot

perform updates or writes directly. To read memory the speculative primitive makes use of the

ability to bring things into cache. If a load for an uncached memory location is initiated specula-

tively it will not finish within the speculative window (meaning no value can be exfiltrated to the

real world). However, the memory read is not canceled and the value will be available from cache

when the processor accesses it speculatively again. To update memory, the speculative instructions

must communicate to the real world. We use a cache side channel to do so, but other side channels

compatible with Spectre could also be used [76].

We note a performance tradeoff between the size of communication (e.g. 4 bits vs 8 bits) and

the time it takes the real world to recover the result from the side channel. Using Flush+Reload [140]

as our cache side channel, recovering the result requires accessing all elements in an array expo-

nential in the size of the result (e.g. 28 array reads to recover an 8-bit result). Therefore, there

is a performance advantage for keeping the size of the result small, and communicating out small

pieces of information that are aggregated by the real world over multiple speculative executions.

Meanwhile, smaller channels introduce more overhead in recovering information. We investigate

this tradeoff in Section 2.6.2, and find that 8 bits is near optimal in practice.

2.4 Application Payloads

While the amount of computation done in a single speculative execution is small, we demon-

strate several applications that can take advantage of multiple speculative runs to carry out com-

putation.

26

Flush ptr &
Probe Array

Jump Pattern

Reload /
Time Cache

Update State

Probe
Array

State

Speculated
Speculative

Gadget

Real World Speculative World

Execution Path Data

Data

Resolved

Speculative
Execution

Payload

Jump to ptr

Figure 2.5: ExSpectre model — General model of
speculative computation within the payload process
when triggered. The Speculative Gadget has read-only
access to all memory within the process, but can only
return updates/results via a cache side channel (by
accessing the probe_array). The process can subse-
quently Reload from the cache side channel to learn the
speculatively-computed result, and update the state of
the Real World process.

As a first step, we observe that the speculative primitive can be used to trivially implement

a finite state machine: logic can be done in the speculative world, while updates to the state

are communicated to the real world where they are stored. On the next run of the speculative

instructions, the state is read from the real world state (along with any inputs), state transitions

are computed and communicated back. In this mode, the state is maintained by the real world,

while updates are controlled by code executed speculatively.

We further observe we are not limited to finite state machines, but can support any model of

computation where updates to any state are finite (i.e. can fit within the bandwidth constraints

of the speculative primitive). This encompases Turing machines [118] as well as certain random

access machines, which we investigate next. Figure 2.5 demonstrates the execution flow of a sample

ExSpectre malware.

2.4.1 Turing Machine

To demonstrate that arbitrary computation can be performed cooperatively between the

speculative world and real world, we implement a Turing machine, and configure it to run a 5-state

Busy Beaver function [118, 17, 63]. This configuration allows us to run a large number of steps

with very minimal logic.

Updates to this Turing machine are computed speculatively, while the real world keeps track

27

of the state and full tape of the machine. Thus, the logic of the machine is entirely contained in the

speculative world, while the state may be externally visible (e.g. to a dynamic debugger). We note

that the machine only operates when the trigger executes, making it difficult for an analyst with

only access to the Turing machine to determine exactly what the machine will do from its initial

state.

However, this toy example is meant only as an illustrative example of arbitrary computation,

not as a robust means of obfuscation. Indeed, even the initial state of a Turing machine alone

may reveal a significant amount of information. Furthermore, the analyst may attempt to locate

potential speculative entry points, even without the help of the trigger program. We describe ways

to address both of these next.

2.4.2 Unpacking and Decryption

While a Turing machine demonstrates that arbitrary speculative computation is possible,

hiding malware this way has several drawbacks. First, Turing machines are a poor choice for

practical computation, as they are inefficient and have no direct way to interface with the rest of

the system (e.g. via system calls). Second, as mentioned, they leave a great deal of information

available to the analyst, including the initial tape state, and a potentially small (enumerable)

number of possible speculative entry points.

We explore a more practical application of using ExSpectre to perform decryption specu-

latively. To hide keys from the analyst, the key and decryption code only occur in the speculative

world, while the initial payload program contains only the ciphertext. While partial plaintext will

be available in the real world during execution, we emphasize that this only occurs when the trigger

runs. Before this, the state of the program reveals only the ciphertext that will be decrypted. While

the speculative entry point enumeration attack could be used to reveal the keys used to decrypt

this ciphertext, we describe a way to derive the decryption key entirely from the trigger program.

Thus, an analyst that only has access to the payload program will be unable to learn the key or

decrypt the embedded ciphertext.

28

We also note that even when the trigger runs, decryption does not occur outside the specu-

lative context, meaning that any traditional traps or debugging breakpoints placed on decryption

instructions or routines will not occur, even as they are used speculatively. These instructions could

even be obfuscated themselves by placing them in other misaligned instructions, and choosing a

speculative entry point that jumps to the middle of other instructions.

We note that 200 instructions is too short for most software-implemented cryptography.

However, modern Intel CPUs provide hardware support for AES, which we find only takes a handful

of µ-ops to perform the instructions needed in AES decryption. We discuss details of our speculative

AES decryption in Section 2.6.2.

2.4.2.1 Obfuscating keys with nested speculation

As mentioned, even with encryption, an analyst that can locate the speculative entry point

and discover the decryption key. For instance, the analyst could locate the speculative entry point

by searching for AES-NI instructions in the payload program, ultimately discovering the keys it

derives and uses.

We can overcome this by having the trigger program communicate the decryption key to

the payload program via the branch predictor. While prior work has used the branch predictor

to exfiltrate keys from other sensitive processes [2], we inject a key into the speculating payload

program from the external trigger program. To do this, we use multiple speculative entry points,

each that derives a unique decryption key before calling a common decryption routine. Since the

exact speculative entry point is determined by the trigger program, an analyst cannot trivially

discover the decryption key directly from the payload program.

Still, an analyst could enumerate all potential entry points, testing each one until they find

one that correctly decrypts the ciphertext. In a 1 MB binary, there are (at most) only 1 million

possible entry points, providing just 20 bits of security, trivial for an analyst to brute force. An

analyst simply needs to test each of the 220 entry potential entry points to discover the correct key.

To increase security, we instead use nested speculation to chain entry points together. Rather

29

than derive the key from a single entry point, we have each potential entry point perform another

indirect jump that the CPU cannot immediately resolve, forcing it to speculate while already

executing speculatively. In other words, in the speculative world, we make an indirect jump that

depends on a cache-evicted variable, prompting the CPU to double-speculate. The predicted target

of that jump will also be driven by the trigger program’s (mis)training of the indirect branch

predictor. On CPUs that support double (or arbitrarily nested) speculation, we can repeat this

process, with each new subsequent entry point determined by the trigger program. At each entry

point, we shift in additional bits to a register as the AES key. Without the trigger program, an

analyst cannot determine the path the payload program will take speculatively.

As an illustrating example, imagine a trigger program makes 30 training jumps, followed by

10 additional indirect jumps, and the payload program performs the same 30 training jumps before

a stall. At this point, the CPU will predict the payload program will also perform the next 10

jumps, speculatively following the pattern of the trigger program.

If each nested speculative jump has the potential to land in 4096 (212 possible locations, each

entry point can shift in 12-bits to the key, for a total of 120-bits over the 10 jumps before calling

the common decryption routine. A key constructed in this way would be infeasible for an analyst

to brute force, as the payload program yields no information about which of the potential 2120 keys

will be derived.

We describe our implementation of nested speculative execution in Section 2.6.2, where we

speculatively derive a 128-bit AES key. Figure 2.6 demonstrates this in practice, the trigger program

running a series of training jumps followed by indirect jumps influences the payload program to

follow the same path.

2.4.3 Emulation

To combine our encryption and arbitrary computation in an efficient way, we implemented

an emulator that gets its instructions from the speculative decryption described previously. In

the payload program, the emulated instructions are initially encrypted under a key that will be

30

Gadget

Trigger Payload

Matching
Jump

Pattern

Matching
Jump
Pattern

Jump to ptrJump Addr 1

Jump Addr 2

Jump Addr...

Jump Addr K

Load Key frag.
Jump to ptr

Load Key frag.
Jump to ptr

Addr 2

Addr 1

...

Decryption
Gadget

Addr K

Exfiltration
Detection

Jump to ptr

Speculative Execution

Figure 2.6: Nested Speculation — Some CPUs
support nested speculation, allowing the branch
predictor to speculate a branch while already exe-
cuting speculatively. We use this to obfuscate key
derivation. The trigger program executes a se-
quence of indirect jumps, which the payload pro-
gram will follow speculatively. Each jump target
in the payload program will add a small number
of bits to a speculatively-computed key. Without
knowing the exact pattern of jump targets (speci-
fied only in the trigger program), the analyst will
be unable to determine the key when a sufficient
speculative depth/number of targets is used. In
our implementation, we used a speculative depth
of 16 with 28 targets to derive a 128-bit key. While
the decryption gadget may be easy for an analyst
to find, without the key, the encrypted data re-
mains inaccesible.

delivered by the trigger, as described previously. Once the trigger executes, it will cause instructions

to be decrypted and run by the emulator.

Traditional reverse engineering methods will reveal only that emulation is being done, while

the program being emulated remains encrypted. Even when the trigger is running, only the parts

of the code that execute would be revealed to a careful analyst observing the CPU’s committed

state, while the remainder of the emulated program would remain hidden.

We design a custom emulator and instruction set—SPASM (Speculative Assembly)—that

accommodates the constraints of our speculative primitive. SPASM is a 6-bit Instruction set,

where all instructions (including operand, registers, and arguments) fit within 6-bits. This allows

each step of the speculative world to emit a single SPASM instruction to the real world for emulation

by a light-weight SPASM emulator. Using SPASM, developers can write programs, assemble and

encrypt them into a payload program. When the associated trigger program runs, the payload will

decrypt SPASM instructions in the speculative world, and execute them one at a time.

While the custom emulator that we developed gives higher level abstraction to an author, it

still requires programs to be written in a custom assembly language. We note that the ExSpectre

31

model is not intrinsically linked to the SPASM emulator. A wrapper could be implemented around

other existing emulators to construct instructions incrementally through the fixed-width channel

(e.g. using 4 8-bit reads to reveal a single 32-bit ARM instruction), allowing for encrypted payloads

to be written in higher-level languages. We also note that this provides flexibility to the authors,

allowing them to completely redefine instructions or use a different instruction set altogether to

hamper detection.

2.5 Triggers

So far, we have described using a custom program as a trigger, which performs a pattern

of indirect jumps to mistrain the indirect branch predictor, leading the payload program to its

speculative entry point. In this section, we describe alternative triggers, including using benign

programs already on the system, and recent Spectre variants.

2.5.1 Benign Program Triggers

Custom trigger programs that are installed with malicious payload programs may be easy

for an analyst to pair up and analyze. As an alternative to trying to hide the trigger program from

the analyst, ExSpectre can use benign programs already installed on the system as a trigger.

For example, if a benign application makes a series of indirect jumps—thus training the

indirect branch predictor—an ExSpectre payload can make similar indirect jumps leading up to its

speculative entry point. The payload’s speculative entry point will be determined by the benign

application, but may be even more difficult for an analyst to discover, as now the ExSpectre trigger

could be any application running concurrently on the system.

OpenSSL We experimented using the OpenSSL library as a potential benign trigger ap-

plication, as its source code has a gratuitous use of function pointers which compile to indirect

jumps. In addition, it has many complicated code paths that can be easily selected by remote

clients through their choice of cipher suite. This allows a remote attacker to trigger ExSpectre

malware on a server running a (benign) TLS stack supported by OpenSSL, simply by making a

32

large number of TLS connections with a specific cipher suite. We describe our implementation

using OpenSSL as a trigger in Section 2.6.4.

In addition, an adversary could use a benign application (like OpenSSL) to communicate

information covertly to the malicious payload program. For example, with OpenSSL, the attacker

could have a pair of uncommon cipher suites, where using one results in communicating a 1-bit,

while use of the other communicates a 0-bit to the payload. To receive data, the payload would have

to do indirect jump patterns corresponding to OpenSSL code for processing both cipher suites, with

the corresponding speculative entry points shifting in the appropriate bit. Thus, an adversary can

communicate remotely (over a network) to the payload program indirectly via a benign application.

We observe that communication could also go in the other direction: from the payload

program back to the remote adversary, also via the benign application intermediary. The pay-

load program could influence the performance of the benign application, and the adversary could

time responses from the benign application to receive covert information from the malicious pay-

load [110]. This would allow the malicious payload to operate entirely speculatively, without

assistance from the real world for keeping state.

2.5.2 Speculative Buffer Overflow

In addition to using separate trigger programs, ExSpectre can also use trigger inputs to a

payload program to initiate its malicious behavior. While existing fuzzers and symbolic execution

tools can discover traditional input triggers, we can leverage other Spectre variants to obfuscate

our triggers.

To do this, we use Speculative Buffer Overflows (SBO) [76] to redirect control flow to a

speculative entry point specified by user input. We design a payload program that takes arbitrary

user input and performs appropriate bounds checks to ensure no traditional control flow violations

could be exploited. However, using the Spectre 1.1 variant, control flow can still be violated

speculatively, allowing the adversary to force a speculative entry point based entirely off the input

provided. This allows the trigger to be an input, potentially even provided over a network if the

33

payload program accepts network data. Traditional symbolic execution and code coverage fuzzers

will be unable to discover this trigger input, as they do not model the speculative state of the CPU.

To create an SBO-triggered payload program, we make the following code pattern, as seen

from Kiriansky and Waldspurger’s Spectre 1.1 description [76]:

i f (y < l enc)

c [y] = z ;

With user controlled y and z and sporadically uncached lenc, an attacker can speculatively overflow

array c to overwrite a return address (or function pointer, etc) and redirect control flow. Note that

the bounds check on y will ensure that this program will not actually allow a buffer overflow to

occur, but the attacker can nonetheless use this to influence a speculative entry point based on

their choice of y and z.

We make use of this pattern in a willing payload such that user input can intentionally

mistrain the branch predictor by repeatedly sending valid (in-bounds) values of y before sending a

value that would overflow the bounds of c. The speculative entry point is also chosen by the trigger

in this scenario as z contains the address of the speculative entry point, allowing the attacker to

create a ROP-style speculative execution path through the payload.

We implemented an experiment to determine the number of times a branch needs to be

“trained” before it can be used as a speculative buffer overflow. Figure 2.7 shows that several

hundred benign inputs are needed to reliably be able to observe speculative buffer overflow behavior.

2.5.3 Speculative Store Bypass

Speculative Store Bypass (SSB) (Spectre variant 4) can similarly be used to construct an

internal (input-based) trigger using the CPU’s speculative load-store forwarding [88]. In a specu-

lative store bypass, the CPU incorrectly speculates that a store will not alias with a future load,

and uses a stale (wrong) value for the result of the speculative load.

To redirect control flow, a payload program could use a function pointer or indirect branch

34

Figure 2.7: Speculative buffer overflow warm-up — The direct branch predictor must be
trained to expect that a branch will go a specific way before speculative buffer overflows can
be used. We varied the number of times a branch was trained to be taken and observed the frac-
tion of times we achieved a speculative buffer overflow execution immediately after (measured by
observing if a speculatively-loaded value was present in cache avgeraged over 20,000 trials). We
find that a branch must be trained in a direction hundreds of times before it can be reliably used
in a speculative buffer overflow.

target register as the destination for a speculative store bypass, causing the CPU to use a stale value

to speculatively determine where it would go. The stale value could be controlled by a previous

unrelated input, allowing an adversary to specify the speculative entry point in a carefully crafted

data input. While the program never executes at this stale address in reality, the CPU will briefly

speculatively execute there, enabling ExSpectre payloads. Like the speculative buffer overflow, this

trigger also allows ROP style chains to execute a series of speculative gadgets.

2.6 Implementation and Evaluation

In this section, we discuss implementation details for our payload and trigger programs.

2.6.1 Turing Machine

We designed our Turing machine implementation to work with our custom trigger program,

with 28 indirect jumps mimicked by the Turing payload program. We implemented a 2-symbol 5-

state Busy Beaver Turing machine logic at the speculative entry point (in 42 x86-64 instructions),

returning the state update, symbol to write, and tape move direction in a single byte via a cache

35

side channel.

We observed in our implementation that it is important that all values used in the speculative

world—as well as the code itself—be cached. If these are evicted, the speculative code may fail

to run, or the CPU may speculate on the value of the uncached item, which may be incorrect.

While this does not impact the correctness of normal programs whose incorrect speculations will

be resolved, our speculative code reports results back to the real world before this resolution. In

our Turing example, we observed this as incorrect state transitions.

This error is particularly devious, as it is not an error of bit flips or noise, but rather the

processor speculating what the speculative gadget will read from memory. Thus, error correcting

codes on the reported result do not improve the situation.

Instead, we repeat the execution several times and look for the modal value over all iterations.

We measured the error rate of our implementation as a function of how many redundant iterations

of the same step, and found that 10 redundant iterations resulted in 1 error every million Turing

steps, with the error rate dropping exponentially as iterations increase. We choose 11 iterations as

a conservative bound (error rate measured to be 0), and computed 1 million Turing steps at a rate

of 1351 steps per second.

2.6.2 AES Decryption

The speculative world is able to take advantage of the AES-NI instructions to decrypt mes-

sages. However, the speculative upper-limit of about 175 µ-ops is not enough to allow us to

compute the key expansion, even using the aeskeygenassist instructions. To avoid this, we can

either preload the expanded key schedule into the program (instead of the key), or use a cheaper

(non-standard) key expansion algorithm. For the former, we note that an analyst could observe

the structure of a normal key schedule, but we can avoid this by simply selecting 11 random round

keys. We note that this should not weaken the security of AES, as we can ensure the round keys

are not linearly related.

We wrote our AES decryption payload in 35 x86_64 instructions and 2 lines of C (which

36

compiles to an additional 31 x86_64 instructions). The payload implements AES-CTR mode de-

cryption, reading a global index and returning the decrypted byte at that location in the ciphertext

via the cache side channel. In this model, the speculative function decrypts a full 16-byte AES

block each iteration, but only returns the bits specified by the index.

We demonstrate the speed that information can be decrypted via the speculative world, and

we vary the channel width of the side channel from 1 to 12 bits to measure its performance. At

low channel width, reading from the cache side channel requires timing reads from only 2 locations,

while at 12-bits, the side channel requires reading 212 locations. On the other hand, there is a fixed

overhead per speculative iteration that favors increased channel width to maximize bandwidth.

As shown in Figure 2.8, 8 bits is the optimal side channel width, allowing us to decrypt over

5,000 bits per second (625 Bytes/sec). We note an improvement over this rate by loading multiple

values into the probe array during speculation. Instead of a single probe array of 1024 entries

communicating 10-bits, we can split the array into four sections of 256 entries each, and signal four

times (one per section) during speculation. This provides a 32-bit channel overall, while still only

having to probe 1024 entries. This method is capped by the limited µ-operation budget, however

our implementation using these parameters (four sections of 256 entries) is able to decrypt over

11 Kbps (1,425 Bytes/sec).

We also implemented our nested speculation technique for obfuscating keys, making 256

speculative landing spots that each shift 8 unique bits into the 128-bit register %xmm0, and then

performing an indirect jump. We then had a custom trigger program perform 16 indirect jumps

(after the initial 28) that corresponded with 16 randomly-chosen landing spots in the payload

program, training the branch predictor. When the payload program reaches the first speculative

jump, it follows the same pattern speculatively, eventually filling %xmm0 with the corresponding

16 ∗ 8 bits. We then used the aesenc instruction to expand these 128-bits to a full key schedule,

and performed decryption as described previously. Thus, without the trigger program, an analyst

has no information about what key is used to decrypt the ciphertext in the payload.

37

Figure 2.8: Speculative Bandwidth — Using our speculative primitive, 1KB of data can be
decrypted and exfiltrated at a speed of 5.38 Kbps from the speculative world with 20 redundant
iterations per round (to ensure correctness). Increased channel width exfiltrates more data per
round, but takes longer to measure the cache side channel. Optimal throughput is achieved with
an 8-bit channel.

2.6.3 Emulator

We have implemented our custom instruction set architecture—SPASM—as a model using

two pseudo-registers, and 6-bit instruction length which allows for a relatively direct programming

model in which structured values can be entered into memory locations before making a systemcall.

In this model of computation there are effectively no instruction arguments, as we must

return an entire instruction from the speculative world inside the limited-width cache side channel.

Although other small instruction sets exist, they either allow variable instruction lengths, are too

long even in reduced form, or did not have significant support to make them favorable for developers.

We used 6 bits in the construction of this instruction set as our goal is to limit the length of

each opcode as much as possible. Note that this is different from the goal in maximizing bandwidth,

as our goal now is to maximize instruction throughput. Given our short instructions, loading values

into registers requires shifting in 4-bits at a time. SPASM has two registers that act as a pointer and

working register, that can be used to perform jumps, arbitrary memory reads and writes, and basic

arithmetic. We also have a syscall instruction that makes a real system call to the underlying

operating system with parameters loaded from the SPASM state, allowing us to interact with the

real world.

In SPASM we have implemented multiple example programs that we encrypted and loaded

38

Flush ptr &
Probe Array

Jump Pattern

Reload /
Time Cache

SPASM
Emulator

Probe
Array

State

Speculated
Decryption

Gadget

Real World Speculative World

Execution Path Data

Encrypted
Binary

Resolved

Speculative
Execution

SPASM Payload

Jump to ptr

SPASM
Instruction

SRIP

SRSP
PTR
VAL

SRAX

...

Stack

SRBX

Emulator
State Figure 2.9: SPASM model — Our SPASM emu-

lator speculatively decrypts instructions, and em-
ulates them in the real world. The Speculative
Computation decrypts the encrypted SPASM bi-
nary using AES, returning the result through the
side channel to allow the Real World to update the
emulated state and make system calls on behalf
of the speculative world.

into a ExSpectre payload, which decrypts and emulates SPASM instructions only when the corre-

sponding trigger program is running. We have implemented a HelloWorld program that prints to

stdout, and a FizzBuzz program that demonstrates control flow and arithmetic operations while

printing to stdout. Finally, we implemented a ReverseShell program that opens and connects a

TCP socket to an attacker-chosen location before executing a local shell and allowing the remote

adversary to issue shell commands on the victim machine. Figure 2.9 details the high-level flow of

a SPASM payload.

Our ReverseShell program consists of 355 SPASM instructions, and makes six system calls

to open a socket, connect to it, duplicate I/O file descriptors, and perform an execve system call

to open a shell. In our tests using 5 iterations per decrypted instruction, the ReverseShell program

takes just over 2ms to launch a reverse shell once triggered.

2.6.4 OpenSSL Trigger

To demonstrate a benign trigger application, we implemented an ExSpectre payload that

would trigger when running concurrently with OpenSSL. We disable ASLR for simplification, but

note that branch predictors can also be used to determine ASLR offsets of co-resident applications,

and our attack adjusted accordingly [38].

We used gdb to run an instance of an OpenSSL server (version 1.0.1f), and printed out every

39

instruction executed and its address after a breakpoint on the SSL_new function. We then made a

TLS connection to the server, which produced over 13 million instructions, including over 359,000

direct jumps and 28,000 indirect jumps. We then searched for the longest repeated set of more

than 28 indirect jumps that ends with a unique jump (i.e. source and destination do not occur in

the previous 28+ indirect jumps).

We discovered a candidate that corresponds to code in OpenSSL’s nistp256.c that con-

tained 31 indirect jumps repeated 254 times each handshake. This code is used during the TLS

key exchange as the server computes the ECDHE shared secret. We made a list of 31 source-

destination address pairs for these indirect jumps, and constructed a jump/ret chain to mimic the

same jump pattern in our payload program. Our payload program mimics the first 30 indirect

jump source/destination pairs, with a final jump going to a cache timing function in our payload

program. However, due to the prior pattern, this last jump is frequently mis-speculated (about

3.5% of the time), and instead goes to the destination corresponding to the 31st jump in OpenSSL,

which serves as our speculative entry point.

We ran experiments on an Intel Haswell i5-4590 CPU, with OpenSSL and our payload pro-

gram pinned to the same core using taskset. We induced the jump pattern in OpenSSL by running

Apache benchmark against it to generate thousands of TLS connections using the ECDHE key ex-

change with the secp256r1 curve (ECDHE-RSA-AES256-GCM-SHA384). When running Apache

benchmark locally, our payload program reliably executes (speculatively) at the intended specula-

tive entry point about 3.5% of the time. When apache benchmark runs on a remote machine, this

rate drops to approximately 2.0%. Nonetheless, these are both sufficient to perform computation,

as our payload can simply increase the amount of iterations needed to extract meaningful results

from the speculative world.

We verified that our payload program did not execute at the speculative entry point when

we ran other programs that simply consumed CPU on the same core. In addition, when we used

Apache benchmark to create thousands of connections with a different cipher suite (DHE-RSA-

AES128-GCM-SHA256), we similarly saw no speculation at the entry point. This could allow an

40

adversary to use an obscure or uncommon cipher suite to trigger a malicious ExSpectre payload

program on a remote server.

2.7 Discussion

2.7.1 Defenses

We now address possible defenses to detecting and reverse engineering malware that uses

ExSpectre.

2.7.1.1 Implemented Mitigations

Multiple patches and micro-code updates have been developed to mitigate Spectre vulner-

abilities, however, none of these entirely prevent ExSpectre malware from working, as they are

generally not designed to protect programs that willingly use Spectre against themselves.

Indirect Branch Predictor Barrier IBPB is used when transitioning to a new address

space, allowing a program to ensure that earlier code’s behavior does not effect its branch prediction.

IBPB requires CPU and operating system support. However, we observe on Linux that processes

running under the same user group do not receive IBPB protection, enabling ExSpectre when the

trigger and payload run under the same group. Furthermore, IBPB does not prevent the speculative

buffer overflow variant of ExSpectre described in Section 2.5.2.

Single Thread Indirect Branch Predictors STIBP prevents sibling hyperthreads from

interacting via the indirect branch predictor. However, this does not prevent co-resident processes

from cooperating when they run on the same logical core.

Indirect Branch Restricted Speculation IBRS prevents code in less privileged predic-

tion modes from influencing indirect branch prediction in higher privileges (e.g. the kernel). This

does not prevent speculative execution in a willing payload program in a less privileged speculation

mode.

41

Retpoline is a software mitigation that replaces indirect jumps with a special call/over-

flow/return sequence, controlling where the CPU will speculate the indirect branch to a contained

(and benign) section [119]. However, this defense is opt-in which ExSpectre binaries could simply

choose to not use, or alternatively use the unaffected speculative buffer overflow variant.

2.7.1.2 Malware Detection

While not a primary goal of ExSpectre, we consider the ability of ExSpectre malware to hide

from detection.

When using the cache side channel variant of ExSpectre, the payload program must at least

occasionally watch this side channel, offering a potential method for detecting ExSpectre malware.

Analysts could search for telltale signs of cache inference behavior, such as the use of clflush

instructions or reading cycle timings. At the cost of performance, ExSpectre could choose to use a

more subtle cache side channel that does not require this, such as Prime+Probe, or by exploiting

race conditions between multiple threads to allow the speculative world to influence the behavior

of the real world.

ExSpectre could also use another side channel method that avoids the cache to exfiltrate

information from the speculative gadgets, such as the branch predictor itself [40], memory band-

width, power utilization, or contention over other shared resources [76]. While cache channels tend

to have the highest throughput, they are not the only resource that must be monitored to detect

or prevent these types of attacks.

Anti-Virus Detectors We verified that modern Anti-Virus technologies were unable to

detect and flag ExSpectre malware. We used ClamAV, BitDefender and rkhunter, which mainly

rely on signature and string based detection. BitDefender does feature support for unpacking

or extracting malware, though appears to simply try unpacking using several known packers and

encoding formats [1]. Thus, it is not surprising that these tools cannot detect ExSpectre.

Bare Metal Modern malware often uses hardware minutia to identify and fingerprint

execution environments in order to detect when it is under debugging or inspection [82, 8, 98].

42

To prevent such identification, analyzers often employ “bare metal” execution [74], running the

malware on dedicated hardware that allows introspection and observation of the system without

interfering with its normal operation. This prevents malware from using so-called “red pill” checks

to observe that it is under test (and hide its malicious behavior) [75]. However, to the best of our

knowledge, no publicly available bare-metal environments allow introspection on the speculative

state of the CPU, making it difficult to analyze ExSpectre malware. However, such environments

could be useful for observing the behavior of ExSpectre malware in the presence of its trigger if

available, as modifications in the real world could be easily tracked.

Symbolic execution has also been used to find environmental red pill checks [109]. However,

such analysis would be ineffective against ExSpectre, as symbolic execution does not reason about

speculative paths and how they might influence a program.

2.7.1.3 Reverse-engineering triggers

For program-based triggers, an analyst could attempt to find the trigger program by exam-

ining the execution path of the payload program, and locating a common indirect jump pattern

between payload and potential triggers. Since both programs must share a common indirect jump

pattern to interact via the indirect branch predictor, there must be some overlap which is unlikely

to occur randomly between two programs.

We note that while the analyst may learn the execution path (and thus true indirect jump

pattern) of the payload program, they may not be able to capture every potential execution path

in all potential triggers. For example, in the OpenSSL trigger, the analyst may not have captured

all potential indirect jump patterns, as doing so would require exhaustively connecting to OpenSSL

with different cipher suites, extensions, and failed handshakes. However, the analyst can still make

a list of indirect jump locations in a suspected trigger program, comparing these to the jumps taken

by the payload. If there is significant overlap, the analyst could spend time to discover what inputs

to the trigger program produce similar indirect jump patterns, thus discovering the trigger.

ExSpectre malware could attempt to thwart this analysis by using decoy indirect jumps that

43

do not correspond with the trigger, but potentially correspond with other (non-trigger) binaries.

In addition, this analysis method is ineffective at inspecting the speculative buffer overflow variant

described in Section 2.5.2, as it does not use a separate trigger program.

Alternatively an analyst may attempt to identify sections of the program or dead code that

will be used to access the probe array and thereby find the speculative gadgets. However, identifying

sections of memory that will access the probe array is equivalent to the “Must Alias” or “Points-To

Problem” which has been proven undecidable without significant restrictions [103, 79].

2.7.2 Future Work

ExSpectre demonstrates a general model for hiding execution in the speculative world and

examines the implications and limitations on modern processors. Given the wide-spread nature of

the Spectre vulnerability and the ubiquity of side-channels, we believe that this work can be directly

extended to other architectures, such as ARM, and other processors making use of speculative

branch prediction.

2.7.2.1 Multiple Triggers

To create further difficulties for an analyst, or to further target the execution environment,

it is possible to have the payload program to combine multiple triggers. Instead of requiring

only a single trigger program, the payload could require multiple trigger programs to be running

simultaneously, or in a particular order. Alternatively, the payload could combine trigger programs

with input triggers, forcing an analyst to understand multiple variants simultaneously.

This could allow fine-grained targeting of malware. For instance, the attacker could dis-

tribute trigger programs through different channels to target different sets of victims, and have

the ultimate payload only operate at the intersection of these groups. As an example, one trigger

program could be distributed to a particular country (e.g. Iran), and another to a particular device

globally (centrifuge controllers), resulting in the malicious payload (Stuxnet) only being revealed

and executed on the intersection of these two groups.

44

2.7.2.2 Virtual Machines

Virtual environments could also be host to ExSpectre malware and triggers. For instance,

malware on one EC2 instance could potentially be triggered by a trigger program on another

seemingly unrelated instance. We have found that the hypercall context switch from guest to

host on VirtualBox is lightweight enough that a trigger program running in a guest can activate a

payload program running in the host on the same CPU core. However, we have so far been unable

to go in the opposite direction, and similarly have yet to achieve guest-to-guest interference. More

work is needed to determine if such barriers are possible to overcome, and if stronger isolation is

needed in the virtual machine context.

2.8 Related Work

2.8.1 Weird Machines

ExSpectre shares many properties with weird machines—a machine which takes advantage

of bugs or unexpected idiosyncracies in existing systems to perform arbitrary computation [14, 15].

In particular ExSpectre showcases the ability to use CPU speculation to compute.

Recently there has been a trend of features in modern processors such as multiple threads

sharing system resources and optimizations done across the process isolation boundary which lead

to opportunities for “weird machines” [21]. In particular, previous examples of “weird machines”

include traditional vulnerabilities such as buffer overflows, format string exploits and return oriented

programming [96, 55, 111]. Weird machines have also been built using operating system page

faults, enabling the computation of arithmetic and logic operations without the use of traditional

instructions [9]. ExSpectre extends research in “weird machines”, and takes advantage of speculative

execution to execute instructions that otherwise appear to be dead code.

45

2.8.2 Covert Channels

Spectre builds upon prior work on cache side channels, and similarly uses them to leak in-

formation from processes [99, 143, 97]. In ExSpectre, we use the branch predictor as a covert

channel [78] between the trigger program and malware payload, allowing the malware’s (specula-

tive) execution path to be influenced by the trigger.

Previous work has examined how to share information over covert channels, such as across

virtualized environments on cloud systems [135], using L1 and L2 cache to share information [99],

measuring temperature to create a thermal covert channel [86, 10], and taking advantage of pro-

cessor architecture to leak information [126]. This includes using the branch predictor itself as a

covert channel [39, 37], which ExSpectre similarly uses.

However, we note that the covert channel used in ExSpectre need not involve two cooperative

programs, and we demonstrate using the benign OpenSSL as a non-colluding program involved in

utilizing this covert channel.

2.8.3 Speculative Execution

ExSpectre builds on Spectre [77] and Meltdown [84] which leverage speculative execution to

leak sensitive information from vulnerable processes. Follow up work has identified several new

Spectre variants, including speculative buffer overflows and speculative store bypass [76, 88], and

has investigated additional ways to leak information using branch predictors as a side channel [40].

Researchers have also leveraged Spectre and speculative execution more generally to demonstrate

web-based vulnerabilities [54, 110] as well as to leak control flow, keys, and other information

from the hardware isolation provided by Intel SGX [95, 18, 16, 80]. Spectre has additionally

been proposed as a way to thwart taint tracking by using speculative execution to copy data

between buffers [61]. ExSpectre likewise takes advantage of speculative execution, but with the

goal of hiding arbitrary computation from reverse engineering, rather than extracting secrets from

vulnerable programs. ExSpectre also benefits from new Spectre variants: as we showed, speculative

46

buffer overflows (“Spectre 1.1”) can be used as an alternative trigger for malware.

2.9 Conclusion

We have presented ExSpectre, a model for hiding computation in speculative execution that is

fundamentally different than existing methods of code obfuscation. Through a series of experiments

we have classified the capabilities and limitations of this speculative primitive and demonstrated

various example applications. We have demonstrated the potential of using speculative execution in

several applications, including a Turing machine, SPASM emulator, remotely-triggered payloads,

and AES decryption. We have also examined Intel’s responses to Spectre and Meltdown and

noted how their defenses affect ExSpectre and how further variants of Spectre can be adapted to

ExSpectre. Current analysis techniques for reverse engineering are insufficient to reason about the

behavior of these programs.

Ultimately, silicon and microarchitecture patches will be needed to secure CPUs against this

kind of malware. Until then, attackers may iterate and find new variants of ExSpectre-like malware.

In the meantime, new detection techniques and software-level mitigations are desperately needed.

Chapter 3

Refraction Networking

At the upper end of large scale systems is the internet and the vast array of networked devices

of which it is composed. At it’s core, the internet facilitates communication and allows systems

to interoperate remotely. Given the scale and complexity of the internet it is not surprising that

unintended functionalities arise in the TCP/IP layers responsible for routing traffic and moderating

sessions. In this chapter specifically we examine refraction networking, which allows proxy operators

to partner with ISPs to move proxy logic to the middle of the network. This increases the stakes

of IP blocking for censors as an entire arm of the internet can be used to complete a connection

and the censor must choose between allowing access and cutting off that arm.

Originally proposed around a decade ago refraction networking has seen multiple proof-of-

concept implementations and more than one deployment. The initial refraction protocol to reach

a test deployment was TapDance, whose novel design specifically operated on mirrored network

tap traffic, forgoing support for inline blocking in favor of deployability. However, the TapDance

deployment illustrated that there were significant drawbacks in the TapDance protocol [49, 121].

This motivated the development of the Conjure protocol [50] reducing the burden on background

sites while at the same time increasing the flexibility to resist censorship. Like TapDance, Conjure

has now seen a significant deployment spanning multiple ISPs and continuing to grow. However, in

operationalizing and scaling this use of unintended functionality of TCP/IP we have encountered

new challenges both technical and organizational.

In this chapter we reflect on our experience of operationalizing and scaling non-standard

48

functionalities for beneficial purpose as part of the production deployment of the Conjure refraction

networking system. In general we find that in its current form refraction networking provides a

buffer behind more direct censorship circumvention techniques. When censors take action against

proxy traffic we see that IP and protocol based blocking that affects traditional proxies is ineffective

against refraction networking. This buffer allows clients to stay online and continue to access the

internet while the proxy operator works to shuffle addresses or wait out protocol over-blocking.

3.1 Introduction

In the last decade since the publication of the original proposals for refraction networking

both refraction and the wider censorship circumvention communities have identified and risen to

new challenges. This provides an appropriate moment for both reflection on the design choices and

lessons of previous work and anticipation of future research efforts.

Refraction can learn from and incorporate techniques that the censorship circumvention com-

munity have developed over the last decade, while at the same time scaling for a potential large-scale

deployment and leveraging the unique routing perspective to create a more open internet.

Over the last decade refraction has progressed from proposal, through research prototype, to

deployed proxy with over 1.5 million daily users. We analyze the latest development in censorship

strategies [115, 11] and proxy design including relatively novel techniques like domain fronting [44]

and CDNBrowsing [64]. We then provide a brief survey of refraction networking schemes and

lessons learned by looking at the first [137, 72, 68], second [136, 34, 13], and current [50, 112]

generations of refraction networking. With this context we first propose potential engineering

designs leveraging recent developments in censorship circumvention [59, 42] to grow and strengthen

refraction deployments before examining broader future research direction.

The rest of this chapter is structured as follows: Section 3.2 will discuss recent censorship

measurement efforts and introduce censorship circumvention tools, Section 3.3 will discuss histori-

cal refraction networking proposals and refraction specific routing attacks, Section 3.4 will explore

opportunities for integrating novel censorship circumvention strategies into refraction deployments,

49

and finally Section 3.7 will provide a discussion on future research directions and potential inves-

tigative “jumping off points” for work in these areas before we conclude in Section 3.8.

3.2 Censorship Background

At their core proxy servers are hosts outside of a censors sphere of influence that make requests

on behalf of clients, while using encrypted channels to share the results. This prevents censors from

introspecting on the content of network traffic within their jurisdiction, making proxies a primary

target for blocking. Proxies are discovered and blocked in a number of ways. A primary strategy

is to interrupt the DNS system and prevent clients from learning proxy addresses. Investigations

into this type of censorship have shown that censors rely on national network infrastructure to

enable censorship strategies [138, 104]. While DNS plays a large role in many censorship strategies,

this work focuses more closely on proxy transports. Here we provide a brief and non-exhaustive

survey of the latest and most effective censorship strategies, circumvention proxy designs, and probe

resistant transports.

3.2.1 Proxy Discovery

A 2020 study by the Censored Planet team identified DNS, HTTP(S), TCP/IP interference

among the most widely deployed censorship strategies globally [115]. This longitudinal study

observed that censorship typically comes in bursts surrounding specific events like elections or

political unrest. Interference in HTTP is typically carried out by passively inspecting content

in search of restricted keywords, detection of which causes censors to interfere by tearing down

connections or redirecting to block pages. HTTPS blocking relies heavily on the server name

indication (SNI) TLS extension and allows censors to block domains that are known to host censored

content. In the absence of effective DNS or HTTP(S) blocking censors block by IP address, typically

preventing server-to-client traffic. During the 20 month study the authors identified censorship

events in 15 unique countries on top of the long-term censorship strategies deployed in countries

like Iran, Turkmenistan, and China.

50

In order to block proxies that don’t provide explicit signals like domain names censors must

first identify them. To do so censors are able to impersonate users, monitor large volumes of traffic,

and interfere in suspected proxy connections. However, network interference can be expensive as

business outages and political backlash can cost governments significant time, money, and influence.

In order to establish high confidence that a particular server is in fact a proxy endpoint censors

employ a number of techniques. Shadowsocks is an open source proxy that has seen wide adoption

throughout China. A 2020 investigation into the measures that the Chinese government takes to

block Shadowsocks servers found that a combination of deep packet inspection (DPI) and active

probing allow the Chinese great firewall (GFW) to establish confidence before blocking hosts [11].

The GFW would watch for specific packet formats to cut down the initial set of suspicious hosts.

They would then send a set of probes in an attempt to illicit specific responses from a suspected

server, including replaying portions of observed sessions. This process ostensibly provided both

confidence that a server was a proxy as well as an indication of the implementation in use (as there

are multiple versions of Shadowsocks available). From here proxies would be added to a block list

that dropped all server-to-client traffic matching either the proxies IP address, or IP address and

port. To clients this would look as though the server had gone offline. This strategy demonstrates

both passive and active censorship strategies as the preliminary step relies on traffic monitoring to

passively filter as much classifiable benign traffic as possible before actively engaging or interfering

with the proxy host and its client connections. While active probing is typically a more aggressive

strategy, china has been seen sending probes as far back as 2011 [35] and continues to do so to this

day.

While not yet widely deployed, strategies have been proposed to identify traffic based on

behavioral indicators like packet size and inter-packet timing [30, 31]. These strategies seek to

identify hosts based on the side-channels in network protocols that are difficult to obscure. Fortu-

nately these traffic analysis strategies typically require a lot of state to be kept and result in high

false positive rates (given the relatively low base rate of proxy traffic) [71]. Due in theory to this

relative risk of blocking benign hosts and the high cost of deployment censors have yet to be caught

51

using such a system.

3.2.2 Proxy Design

Many modern proxies are designed to circumvent these censorship efforts. To address active

probing by censors many proxies require a secret distributed to clients to be present in connections.

While this does not prevent a censor from impersonating a client and connecting to the proxy it

does prevent proxy enumeration through broad scanning efforts that illicit distinguishable responses

from proxy hosts. This can include probes as generic as TCP buffer boundaries and timeouts which

were found to fingerprint many proxies with relatively high accuracy [49].

The probe resistant proxies must then resist the traffic analysis that would distinguish their

protocols from benign traffic on the internet. Strategies for doing so can be broadly classified into

one of three categories. First are protocols that mimic other protocols by hiding in underlying data

channels or hollow out legitimate traffic to replace it with proxy data [89, 130]. A common pitfall

for mimicry protocols is behavioral analysis; for example, a video-call platform does not provide

the same traffic patterns as the general internet usage that a mimicking proxy might display [66].

The second class of proxies randomize their traffic to look unlike any other protocol on the in-

ternet. While a large majority of traffic on the internet uses well defined and well known protocols,

there is a long tail of obscure protocols, some of which control important industrial infrastructure.

Randomizing proxies attempt to take advantage of this. However, where mimicking protocols strug-

gles by not looking similar enough to the benign traffic that they imitate, randomizing protocols

struggle to prevent any classifier from uniquely identifying their traffic. For example aggregated

information about packet entropy can work against randomizing protocols over multiple packets or

multiple connections.

The final class of proxies tunnel traffic through hosts that handle large volumes of benign

traffic. This can be done by relying on generic domain name assigned by cloud providers and

popular protocols like TLS to blend in with high value traffic. Meek does this by using TLS

connections to content distribution networks (CDNs) and cloud providers that allow SNI to contain

52

a generic domain name (e.g. google.com) while the encrypted HTTP header directs traffic to a well

specified host [44]. While this leverages the utility of cloud providers as a bargaining chip to prevent

blocking, it comes with significant overhead. Network services in cloud platforms can be expensive,

and domain fronting proxies are always at the whim of the cloud platforms who generally try to

avoid missing out on large markets in censored countries due to blocking . For this exact reason

Domain fronting has lost support from some the biggest cloud hosting platforms including Google’s

GCP, Amazon AWS, and most recently Microsoft Azure [41, 19, 25]. Cache Browsing proxies rely

on a similar insight. Globally distributed CDN networks often have large rotating address spaces

that censors are unwilling to block entirely — as much as 30% of the statics sites on the internet

are served from CDN caches. This often allows static content that would normally be censored to

become available by simply making that content available on a CDN [92, 64]. The connection to

the CDN is encrypted and the name resolution does not reveal the content that users intend to

access, requiring censors to block entire CDN networks when using traditional domain or address

based blocking methods. Unfortunately this does not work for all content as CDNs primarily host

static sites and moderate hosted content to a degree.

3.2.3 Tor & Pluggable transports

The Tor network operates as a system of proxies that provide guarantees about traffic

anonymity. While anonymity is not the focus of this work the ingress nodes of the Tor network have

seen some of the most aggressive censorship efforts and in turn the most advanced anti-censorship

protocol deployments. The design of the Tor network requires that clients construct a path using a

set of three proxy nodes. Clients select this set from a “consensus” list of currently available nodes

published regularly by the Tor maintainers. This leads to a trivial enumeration attack in which

all ingress nodes known as guards can be block-listed in censoring countries. To combat this Tor

maintains a list of private nodes called bridges that are handed out in controlled manner.

As far back as 2011 it was publicly known that the GFW was probing internet addresses

to identify and block bridges [35, 83], prompting the Tor foundation to identify probing as one of

53

10 key challenges facing the Tor network at the time [5]. To protect the bridges Tor developed

a number of probe resistant proxy protocols called pluggable transports to wrap and secure first

hop connections into the Tor network. Historically obfs4, a randomizing protocol designed to

look like nothing has been reliable and effective at preventing bridge discovery. By design obfs4

requires clients to demonstrate knowledge of a secret shared out of band, any connections unable

to demonstrate that knowledge receive no response from the server [141]. This aligns the challenge

of distributing secrets with the challenge of distributing bridge node addresses. Tor relies on email,

word of mouth, and Meek domain fronting to aid in distributing bridge details. While Meek is

effective against many censors, it is prohibitively expensive to route bulk client traffic so the Tor

nodes limits domain fronted use to bridge distribution efforts. A second pluggable transport seeing

growing use is the snowflake system which relies on volunteers around the world to run WebRTC

clients supporting peer-to-peer (P2P) connections out of censored countries [12]. To connect to a

snowflake peer a client in a censoring country must first perform a STUN/ICE request to identify

their public address before sharing a session description protocol (SDP) offer with the snowflake

broker that matches peers together. This broker connection is once again fronted with Meek. The

P2P nature of snowflake makes it resistant to probing as “snowflakes” are meant to be short-lived

and transient and often require particularized connection tuples to satisfy holes punched in NAT

networks.

Despite these efforts the Tor network remains blocked by the GFW. One of the largest con-

tributing issues is the scale of the Tor networks usage measured against the relatively limited number

of bridge nodes available. By abusing the channels for distributing bridge nodes to legitimate users

censors are able to effectively enumerate all usable bridge addresses. While obfs4, snowflake, and

Meek effectively circumvent the GFW, bridge enumeration prevents Tor from being functional for

Chinese users [83, 27].

54

3.3 Refraction

Over the past decade we have seen many instances of censorship efforts, and one of the

most common patterns throughout those events is the relative position of power that censors hold

in national network infrastructure. Refraction networking in general proposes a response to that

power where the censorship circumvention tools leverage similar positions in routing infrastructure.

By moving proxy logic to the middle of the network we take on both unique challenges, and enable

new censorship resistance.

Multiple refraction networking schemes have been proposed over the last decade with the

connecting tissue being the threat model and high level construction. All refraction schemes deploy

stations at or near Internet Service Provider (ISP) traffic ingress points. They require that the

partner ISP is not malicious, and that a non-zero volume of traffic will transit the link that the

station monitors. Some refraction schemes require the participation of downstream hosts [137,

34, 136], and assume that those hosts are non-malicious, but do not require that they voluntarily

participate.

Each iteration of refraction networking has identified challenges, or proposed unique contri-

butions that strengthen the next generation of proxies. Here we cover significant refraction works

in what we consider to be the first three generations, illuminating both their strengths and the

lessons learned.

3.3.1 First Generation

The first generation of refraction networking protocol design was a result of three independent

parallel efforts examining a similar proxy design paradigm. These set the baseline for refraction

protocols by proposing deployment at middlebox hardware, and leveraging that position against

censorship efforts. All three relied on downstream hosts which they called decoys in some capacity.

Karlin et al. proposed the Decoy Routing protocol which relied on sentinel messages embedded

in TCP streams to indicate to an on-path station to hijack the TCP session and transition to a

55

proxy protocol [72]. This handshake required the station to close the session with the decoy host

using a TCP RST and suppress any further traffic from that host to the client. Telex proposed a

similar one-shot system in which clients would tag a TLS flow with an encrypted message in the

ClientHello nonce field. The message would be indistinguishable from uniform random to anyone

without the stations keys. This allowed the station to optimistically decrypt ClientHello nonces of

TLS sessions that it observed and discover the master secrets of those TLS connections securely

leaked by the client [137]. From here the station would be required to suppress traffic to and

responses from the decoy host allowing the station to use the negotiated TLS channel for proxy

traffic. Cirripede proposed a slightly different strategy of sending probes past a refraction station

using covert channels inside of the TCP headers of legitimate traffic. Once this shared information

was established the client would open a TLS connection to a benign decoy host which the station

would hijack, intercepting traffic sent by client to prevent interference by the decoy host [68].

These early refraction proxy designs lay out many of the foundational concepts for construct-

ing secure communication channels with middleboxes on the internet by parasitizing communi-

cations with downstream hosts. This set of proposals developed multiple tagging and signaling

protocols and provided an early iteration of a multi-station refraction deployment. At the time

these systems were all known as “decoy routing” protocols, which seems fitting given the reliance

on downstream decoys. However, going forward decoy routing could be considered a sub-set under

the umbrella term refraction networking as reliance on decoy hosts is not a pre-requisite.

3.3.2 Routing Attacks

In response to the early refraction proposals Schuchard et al. introduced an attack unique

to refraction networking. Because the proxying logic is deployed at middle boxes in the network

infrastructure and the internet is designed to be resilient to broken links, censors may be able

to simply “route around” refraction stations [108]. To test the theoretical effectiveness of the

routing around decoys (RAD) attack the authors simulate global network links based on CAIDA

inferred network topologies and place refraction station stand-ins at random autonomous system

56

(AS) nodes. They claim that a routing capable censor can control traffic routes to detect 90%

of refraction stations when deployed in as many as 4000 unique ASes. They then claim that as

much as 10% of the internet could deploy refraction and censoring countries would only suffer a

2 - 10% reduction in global reachability based on alternative routes available to censors. Censors

can further leverage this power to test suspicious connections by replaying TCP packets on an

alternative path that routes around the suspected refraction station. A true connection will be

uninterrupted, while a refraction connection will be terminated by a RST from the decoy. Finally

the authors observe that a censor will, under certain conditions, be able to force an asymmetric

route between the client and decoy. For decoy routing schemes such as Telex and the original Decoy

Routing protocol this prevents stations from suppressing response packets from the decoy, breaking

any proxied connections.

While this work identifies novel techniques that a routing capable adversary can leverage

against refraction networking many of the proposed attacks were found to be significantly more

difficult and less effective than originally thought. In response to the original RAD attack proposals

Houmansadr et al. simulated refraction deployments and considered network links with added

information about cost, bandwidth capacity, and pairing relationships [69]. They find that the

alternate paths identified by the original RAD attack would require significant re-organization

of existing network structures within censoring countries, with some paths increasing load by a

factor of 2800. To support these routes latency in network routes would increase on average by

a factor of 8. Beyond this the estimations for reduction in reachability was closer to 30% of

the internet for china (as it is relatively well connected to neighboring countries) and closer to

54% and 87% for Venezuela and Syria respectively whose networks are less robust. This concept

of incorporating information about existing network infrastructure has since been extended to

improve the effectiveness of theoretical refraction deployments by using game theory and modeling

to maximize blocking potential with minimal deployments and sets of starting rules [91, 58]. While

routing attacks provide an attack surface beyond that of endpoint proxies which a routing adversary

can leverage against refraction proxies, large scale attacks are believed to be too expensive to be

57

effective against current refraction systems.

3.3.3 Second Generation

After the initial group of refraction networking proposals multiple challenges were identified.

First, tangential work in censorship circumvention was evaluating fingerprint resistance and secure

transports that would prevent traffic analysis attacks that none of the first generation proposals

considered. These attacks are especially strong against refraction protocols as they purport to

access a specific overt site, but in truth access completely separate content. Bocovich et al. pro-

posed Slitheen to close this gap by incorporating information about the traffic shape of decoy host

connections when injecting the proxy traffic. This is done by replacing only leaf resources such as

images and videos allowing the overt site to load as usual while supporting requests for censored

content.

The routing attacks proposed by Schuchard et al. raised a second major issue in routing

aware censors and the unique capabilities they had to identify and circumvent proxy logic at

middleboxes [108]. While the studies by Nasr and Gosain responding to the RAD attacks focus

on creating as much coverage as possible using tier 1 ISPs and ASes upstream from censoring

countries [91, 58], networks further from censors and closer to the edge of the internet are much

more difficult to route around and easier targets for refraction deployment. Nasr et al. relied on

this insight in their design of a refraction station that operates only on the downstream connections

of BGP routes which are much more difficult for censors to route around [93]. While this effectively

addressed many of the capabilities of a routing censor, it limited the viable deployment networks.

In a separate effort Ellard et al. proposed Rebound which built on the original Decoy Routing

work removing its reliance on asymmetrical routing in both session initialization handshakes and

steady state transmission [34]. In the proposed curveball protocol the client leaks the TLS premaster

secret of a decoy connection to the station using sentinel traffic similar to Telex and sends continual

requests to the decoy allowing the on-path station to inject response data from the covert destination

into requests between the client and the overt decoy site. To do so responses from the covert

58

destination are embedded in HTTP URL field of client-to-decoy requests, which then mirror the

data to the client. This protocol removed the reliance on symmetric routing, but in doing so added

a large amount of traffic overhead on decoy hosts as well as significant limitations on bandwidth.

Finally, when approached about potential partnerships and deployments network operators

were wary of placing the in-line blocking proxy appliances, which all first generation refraction

proposals required, in their networks. The risk of losing service if the proxy appliance encountered

an error was too high. To solve this issue TapDance, a successor to the Telex protocol, was designed

to operate entirely from a passive network tap [136]. TapDance connection are established in much

the same way as Telex — clients securely leak the master secret of a TLS connection with a decoy

host to an on-path station. However, instead of using the station to terminate the connection to

the decoy host, the TapDance client sends an incomplete HTTP request, forcing the decoy host

to wait for the completion without responding. This allows the client to continue sending traffic,

encrypted under the stations public key, to the decoy host which the on-path station decrypts and

proxies to the covert site. Response packets from the covert site are injected into the TLS session

as though it is the decoy host responding. The TapDance protocol was successful in supporting

refraction networking to the standards of ISP operators and was deployed in a test configuration

at a state level research network [49].

3.3.4 Current Generation

The current generation of refraction proxies continue to incorporate developments in network

and censorship research. Over the last decade programmable switches have become more prevalent

and new technologies like software defined networking (SDN) are being incorporated into both ISP

networks and more recently, refraction. Sharma et al. proposed Siegebreaker, a refraction protocol

that utilized SDN to both filter down the traffic that a refraction station is required to inspect

and manage network configuration to forwarded tagged flows [112]. This outlines numerous op-

portunities for improving the production refraction protocols at the network layer reducing station

resource requirements.

59

At the same time, the current generation of refraction proxies benefit from the previous

generations demonstrations of refraction in theory versus refraction in practice. The TapDance

deployment showed that refraction was effective at circumventing censorship, but it did not support

long lived connections well. This significantly impacted the deployment as the covert addresses

were primarily proxy endpoints that TapDance wrapped which typically provide clients with long

lived tunnels. Because clients use an incomplete HTTP request to prevent the decoy host from

responding, the decoy is required to keep the connection open and continually ingest any data the

client sends while waiting for the client to complete the request. Eventually the decoy will close

the connection due to connection timeout or data upload limits. On average this took around 20

seconds after which client would need to renegotiate their connection with the TapDance station. A

second lesson from the TapDance deployment has been that ISPs are often geographically dispersed,

and refraction systems must handle traffic at multiple network ingress points. This was a particular

challenge in TapDance as the the station would attempt to multiplex sessions across multiple decoy

connections, but guaranteeing that any two decoys route past the same tap is a non-trivial challenge.

Instead TapDance opted for the architecture shown in Figure 3.1 which allowed detectors to perform

a handshake before tunneling traffic to a central proxy node that managed sessions. The regular

reconnects added significant delay and caused an identifiable sawtooth pattern in bandwidth usage.

Beyond this clear fingerprint TapDance was not resistant to the traffic analysis attacks identified by

Slitheen. Despite the challenges and shortcomings of the TapDance protocol, it has been running

in production for over 3 years now [121].

Conjure was designed as a successor to the TapDance system and has worked to incor-

porate as many of the good ideas and hard learned lessons from previous refraction protocols as

possible [50]. First and foremost Conjure implements the tap based architecture of the TapDance

system. However, instead of parasitizing a connection to a live host Conjure allows clients to con-

nect to the unused address space that routes past a refraction station and responds as though it is

a server at that address with limited reachability. Because the default state of the endpoints in use

is to never respond to traffic, Conjure limits exposure to RAD, asymmetrical routing, and probing

60
Figure 3.1: TapDance Deployment - To es-
tablish a TapDance connection a client first opens
a TLS connection with a decoy site(1.) and se-
curely leaks the tls secrets to a station deployed
at an on-route tap. The client then prevents the
station from responding by sending an incomplete
HTTP request. The station pulls information out
of the TLS connection(2.) and forwards it to
the central proxy which establishes the connec-
tion to the covert destination on behalf of the
client(3.), responding as though it is the origi-
nal decoy server. The centralizing proxy allows
for transparent reconnects past any tap station
after the first decoy server eventually reclaims its
resources by terminating the connection.

attacks.

Conjure uses a two stage process to establish a proxied connection, similar to the architecture

of the Cirripede system. To effectively circumvent censors, both of stages must be non-trivial to

block. The first is the registration in which a client generates and shares connection parameters

with the station. This process is designed to be modular in order to keep clients online if any

one registrar is blocked by quickly transitioning to another. Currently Conjure supports three

independent registrars. The first uses a TapDance (and Telex) style tagged connection that embeds

session details in an HTTPS GET request using an X-IGNORE header and securely leaking the

TLS keys and registration information to a listening station as described in the original Conjure

paper. The second registrar is a simple http API which can be used in a a direct configuration

or composed with a third part proxy (e.g. domain fronting) intermediary, as shown in Figure 3.2.

The third is a DNS based registrar that allows clients to send short (100–200 byte) messages in

DNS A queries to the listening registrar which implements the functionality of a DNS name server

to provide responses in TXT records. This design is based on, and operates very similarly to, the

DNS-TT proxy proposed by David Fifield [42].

The second stage is connection during which a client connects to a Phantom address, using a

“transport protocol” that wraps the clients connection. Phantoms are chosen during the registration

61

phase from a set of subnets pre-shared with the user in a configuration file. Again, the transport

protocols are modular and swappable to make them as difficult to block as possible. Currently

Conjure supports a minimal transport which prepends the data stream with a 32 byte random

during connection initialization (to allow for de-duplication when phantom tuples collide), and

Obfs4 where each connection generates unique key materials based on the secrets shared in the

registration. The original Conjure paper proposed a third transport similar to the Slitheen protocol

that would allow a client to specify a “Mask Site” that the station would mimic and embed client

traffic within, though this has not yet been used in production due to implementation complexity.

The transport connection transfers information from the client to the station, wrapping the protocol

that is sent to the covert destination. Functionally, the client operates as though it is communicating

with a host at the phantom address though in reality it is the station responding by spoofing the

address in any response packets. Conjure uses two contiguous network connections to accomplish

this, one connection from the client to the station(phantom) and a second from the station to

the covert address with data buffered and transferred between. Conjure requires no kernel level

modifications to the client, making adoption relatively simple. It is important to note that the tap

design of stations necessitates that any packets sent by the client to the phantom address will be

routed beyond the station — any downstream routers will attempt to deliver the packets to the

phantom address.

Because connections to phantom addresses can be long lived, the multi-station coordination

issues facing Conjure are different than those identified in the TapDance deployment. As clients

can register past any one station, and connect past any other, as shown in Figure 3.2, the stations

optimistically share registrations. Conjure uses the registration API as a centralizing node that

allows stations to work together. When a station validates a registration, it shares it with the API

which then publishes it to the other stations.

Conjure is currently seeing a production deployment supporting several million daily users

in countries around the world, transferring an average of around 10 TB per day on their behalf.

The current iteration of refraction proxies continue to learn from and incorporate the best parts of

62

Figure 3.2: Conjure Deployment - With a deployment that requires stations at multiple ingress
points the API acts as a centralizing node. In A. a client sends a TapDance style registration
(1.) that transits past a different station than its phantom connection. To handle this, the station
shares the registration with the API (2.) which then shares it over pub/sub to the other stations
(3.) allowing Station 3 to handle the connection (4.). In contrast, the client in B. and C registers
using the API registrar (1.) which shares the registration to all of the stations (2.) before the client
attempts to connect to the phantom address (3). The client in B registers directly with the API
(requiring an HTTPS connection, exposing them to IP / SNI based blocking) while the client in
C. uses a 3rd party proxy to facilitate the registration request. Configuration C. is useful when the
3rd party proxy is slow or expensive, but difficult to block, as the registration is a small request
and the Conjure phantom connection is long-lived and inexpensive with minimal overhead.

other schemes. With a general focus on deployability, performance, and iterable design, refraction

today is reaching more users than ever before.

3.4 Design

In this section we discuss several novel designs that have been implemented to extend the

functionality of refraction networking from an operational perspective. The designs in this section

are motivated by both censorship strategies proposed in academic work and censorship events seen

in the wild.

3.4.1 Censorship Resistance

One of the strengths of refraction networking as described in many of the previous works is

the requirement that censors blocklist large sets of addresses to prevent clients from connecting. In

Conjure this would require blocking all viable phantom subnets including any legitimate services

hosted therein. If a censor is willing to accept the cost of blocking participating subnets they must

first affirmatively identify those subnets.

63

3.4.1.1 Enumeration Resistance

Currently both Conjure and TapDance clients deploy a list of participating decoys and phan-

tom subnets in the configuration built into each client. This is done because the decoys are used

to initiate the connection, and the original design for Conjure simplified the control channel used

for registration to only allow information transfer from client to station. This change simplified

the implementation of the decoy registrar by removing the need to inject packets back to the client

and limited interference with decoy sites by embedding registration information in an X-IGNORE

header. Because stations have no way of communicating with clients before the connection phase,

clients must derive the phantom address from a set of pre-shared subnets. Conjure clients choose

a phantom by performing a hash-based key derivation function (HKDF) on the shared secret to

select a phantom from a set of usable phantom subnets in local configuration files. Any station

that receives their registration performs the same HKDF and derives the same phantom address.

However, this model of unidirectional registration is not required and actually has the relative

weakness of distributing the list of all usable phantom subnets to all clients. As an alternative

Conjure now supports a bidirectional registration channel where the station is able to communicate

information to the client in response to their registration. In this model information like phantom

address and destination port can be chosen by the station without leaking information about the

larger set of available phantom addresses or the distribution of destination ports in use.

Distributing phantom addresses in this way has multiple added benefits. First it forces censors

to estimate the size of the participating subnets based on addresses that they see allocated to

refraction clients. This increases the probability that they either over-block causing more collateral

damage, or under-block and leave phantom addresses available for use. This also gives stations

more control over the algorithms that are used to assign phantom addresses to clients. Where

unidirectional registrars use a pre-image resistant HKDF to prevent clients from selecting a specific

phantom address, bidirectional registration channels can use more complex assignment schemes

such as reputation based systems similar to those considered for Tor bridge distribution [26, 125].

64

This plays to the strength of refraction as large sets of proxy addresses (relative to Tor bridges)

make sybil attacks less effective.

While unidirectional registration channels have their place in a broad defense against censor-

ship, bidirectional registrars provide an exciting alternative. The API and DNS registrars provide

initial support for bidirectional registration, though the decoy registrar could also be modified

to support a bidirectional channel by reverting to a more TapDance like connection allowing the

station to inject a small response into the client-to-decoy connection.

3.4.1.2 Passive

Beyond enumeration, one of the primary capabilities of a routing adversary is passive ob-

servation of the traffic that transits their network. Historically this tool has been used to identify

proxy traffic before injecting TCP RST packets to interrupt sessions, degrading service by adding

latency or reducing bandwidth, or block-listing participating endpoints.

Refraction is required to resist a number of passive threats, first of which is protocol identifi-

cation. The refraction registration process can be low bandwidth or entirely out-of-band, limiting

the effectiveness of protocol identification attacks. However, the phantom connection should be

performant and support long lived sessions making it the primary target for protocol identification.

For this reason the transport used to initiate and wrap the phantom connection must be non-trivial

to distinguish from benign traffic. The transports that Conjure implements enable a number of

strategies that have worked for other proxies. Currently the obfs4 and OSSH transports employ a

randomizing look-like-nothing strategy. We hope to expand this support in the near future with

a webrtc transport similar to the design of snowflake. This transport would blend in with other

WebRTC traffic, commonly used for media and chat clients, and would allow the Conjure station

to connect out to proxy clients. Beyond this Conjure could support transports that mimic other

protocols such as https (as seen in Cirripede [68] and the Mask-Sites transport [50]).

65

3.4.1.3 Active

More aggressive censors employ active techniques to detect proxies by interacting with the

connection or endpoints looking for behaviors that are unique to circumvention techniques. We

consider these attacks in two separate categories, probes sent apropos of nothing and probes sent

in response to a suspected proxy connection. Censors who participate as legitimate clients function

in a similar manner, though we consider them more generally under the enumeration attack label.

Conjure is particularly effective against probing attacks sent out of the blue. This is because

registration targets are diverse and phantom addresses are transient and particularized. To briefly

consider the current registrars: the API registrar, while easily identifiable (by TLS SNI or IP

address) can be accessed wrapped in any alternate proxy and requires only a single POST request.

The DNS registrar similarly could be blocked by IP address, but it can be accessed recursively

complicating the job plugging all routes. Further the clients original lookup can be done over

encrypted DNS protocols like DoT and DoH. The decoy registrar requires that the TLS connection

securely leaks the session keys using the stations public key; however, tagged traffic behaves no

differently than typical requests as the information for the station is limited to an X-IGNORE header

in a legitimate request. We can extend the decoy registrar to support bidirectional communication

without compromising this probe resistance. Instead of a complete POST request the client will send

an incomplete request, with connection details still embedded in an X-IGNORE header. The station,

upon seeing this injects its response to the client as though it is the decoy responding to a complete

request. The client will then close the connection inducing either a RST or FINACK from the actual

decoy server. This does not require any complex connection resumption or session multiplexing,

like the centralizing proxy in the TapDance implementation, because requests are small and unary

allowing each station to implement this registrar independently. Because Conjure is built as a tap

architecture and the client’s original request prevents the decoy server from responding this registrar

does not require symmetric routing. Support for other future registrars that use non-traditional

channels such as internet relay chat (IRC) or email would also be resistant to this type of probing.

66

Probing attacks against phantoms likewise provide little to no information to censors as

phantoms are drawn from the true background of the internet. If no registration exists, then the

phantom address will exhibit the natural behavior of the target address — that is, live hosts will

respond with protocols they speak, while unused addresses and firewalled hosts drop packets sent

to them. When a registration does exist behavior depends on IP protocol version. If a censor

suspects an IPv4 connection of using a refraction proxy and probes the phantom address it will

again behave as the natural phantom host because refraction stations match traffic on source and

phantom address as well as destination port in IPv4 (currently all transports use port 443 though

support for port randomization can be added). A censor sending follow-up probes in response

to a suspicious connection in IPv4 would have to take over the clients source address in order

to get the station to open a TCP connection. From there all transports require that the censor

demonstrate knowledge of the secret shared during registration, which they will be unable to do.

TCP connections will then be timed out without preventing any fingerprintable behavior in the

TCP buffering [51]. In IPv6 connections are matched on phantom address and port (again only 443

is used currently) to support clients that connect from aggressive carrier grade NAT networks or

use host based privacy addresses. While a censor sending follow-up probes will be able to initiate

a TCP connection if they match the phantom address and port without taking over the clients

address, they will again be stopped by the transport.

In the extreme censors can inject packets into connections in a destructive manner in an

attempt to validate suspicion of proxy use. This can be an injection of random data, a replay

of valid data, or a deferral of client traffic while the censor preemptively injects traffic. Conjure

again relies on individual transports to handle these situations. As noted by Frolov et al. simply

accepting TCP connections and listening is not an uncommon response on the internet representing

�3-6% of IPv4 hosts. To improve this resistance future transports could be designed to truly never

respond to traffic without proof of the shared secret. Several UDP based protocols fit this category

where client data is sent in the first packet, such as Quic, DTLS, as well as protocols not directly

linked to TCP such as obfs4. Due to the nature of UDP replay attacks transports built on top of

67

Figure 3.3: Conjure Bytes Transferred - Conjure has now been live for several years, however
in the last year it has seen significant growth based on implementation efforts and recent events
in the country where it is most heavily deployed (IR). Conjure serves several million users per day
transferring above 23 TB/day at peak on their behalf.

these protocols may require some extra shared state, however these would provide a mimicking and

a randomizing transport that truly look like the background of the internet to an active adversary.

3.5 Usage Trends & Analysis of a Censorship Event

The Conjure deployment is made possible by a partnership with an third party proxy client as

well as several universities and research institutions. With this support Conjure has seen significant

growth over the last three years. Given its tumultuous history with censorship, regularly changing

blocking strategies and blocking broad sets of IPs and hosting providers suspected of hosting proxy

services, Iran has been a primary focus of the refraction deployment. Figure 3.3 shows the growth

in bytes transferred over that time. In aggregate Conjure system averages around 9TB of traffic

per serving just an average of just under 1 million users per day, though traffic volume peaked in

early March of 2023 at over 23TB/day and use connection count peaked in late August of 2023

with over 2.8 million connections per day.

By user count and bytes transferred, Conjure has seen the highest performance in the net-

works run by the Mobile Communication Company of Iran - MCCI (AS197207). In August of this

year Conjure peaked around 2 million connections per day in MCCI alone, transferring over 16TB

of traffic per day on their behalf.

By traffic share, Conjure saw the highest performance in Aria Shatel (AS31549) and Pars

Online (AS16322). In these ASNs Conjure carried up to 25% of data transferred through our

partner proxy on peak days and averaged nearly 10% of total bytes in peak months.

68

Figure 3.4: Conjure Usage By ASN in IR - Usage trends between the major ISPs do not align,
suggesting that the censorship strategies are not centrally coordinated. Though some share overlap
or may be subsidiaries of an upstream censor.

If we look at the usage of Conjure in Iran split by ASN we can see that there are several ISPs

that have a high proportion of their traffic served by Conjure, however the overall usage trends

between the major ISPs do not align suggesting that the censorship strategies are not centrally

coordinated. This can be seen better when looking at a censorship event in Iran.

3.5.1 Active Censorship in Iran

In order to describe the behavior of the Conjure system in the face of active censorship we

look specifically at the fall of 2023. It is important to note that given the nature of censorship in

Iran, we are rarely able to define with certainty difference between expected baseline throughput

and observed throughput during a censorship event. Within Iran, while the government may have

a consistent ethos behind its censorship, the strategies that ISPs employ to enforce it are not

69

Figure 3.5: Iran censorship event - Ahead of the Sept. 16 anniversary of the death of Mahsa
Amini the Iranian and a Sept. 21st announcement of renewed headscarf enforcement the Iranian
government tightened censorship measures on the internet. This targeted direct protocols and IPs
suspected to be participating in circumvention. Through this period Conjure saw increases usage
as it was able to buffer the impact of the blocking, keeping users online.

consistent in time or mechanism.

With this in mind we can look at the changes in the usage and performance of Conjure and

make inferences about the censorship strategies that are being employed.

In September of 2023 the we saw a change in traffic that we find to be demonstrative of a

typical censorship event. Given the significance of September 16th as the anniversary of the death

of Mahsa Amini, the Iranian government seemingly expanded censorship measures on the internet

in anticipation of public unrest. As seen in Figure 3.5 the Conjure system saw a 3x increase in peak

bytes transferred between September 12th and 16th. This is typical of a censorship event where

one or both of the following happen:

(1) The censor blocks a large number of suspected circumvention IPs.

(2) The censor blocks traffic by protocol, typically targeting direct proxies and VPNs as well

as obfuscated proxies using protocols like ssh, quick, and wireguard.

In certain ISPs the impact of a censorship change can be seen more clearly. For example

70

Figure 3.6: Rising Edge of a Blocking Event - Leading up to a blocking event in IranCell
(AS44244), Conjure saw a rise in usage. This includes a shift in the distribution of session duration
and bytes transferred towards towards longer lived sessions with higher overall transfer.

Figure 3.7: During & after a Blocking Event - After the initial dramatic rising edge caused
by new censorship, Conjure usage slowly returns to a steady state as the proxy operator shuffles
addresses and adjusts protocol availability. Conjure is able to buffer the impact of the blocking
event, keeping users online until more performant options return.

Figure 3.6 shows the bytes transferred and session durations for sessions in IranCell (AS44244).

We can see an almost immediate shift towards higher bytes transferred and longer sessions. Inter-

estingly, this happened on September 18th, two days after the anniversary of Mahsa Amini’s death.

This is likely due to the fact that the Iranian government was preparing to make an announce-

ment on September 21st that they would be renewing and expanding headscarf enforcement. We

suspect that the expectation of unrest around this announcement could lead the government to

preemptively expand censorship measures.

If we follow along as this even plays out, we see the other side of a typical censorship event

from the perspective of the Conjure system. In Figure 3.7 we see that after the initial spike in bytes

transferred and session counts, usage begins to taper off. This is characteristic of clients finding

71

solutions to the two censorship effects outlined above. In the first case, proxy administrators will

shuffle addresses and hosting providers to avoid blocking, bringing fresh addresses back to clients.

In the second case, clients will slowly discover other protocols that are slightly more performant

than Conjure.

All in all this censorship event is characteristic of many events that we have seen in Iran.

Further it demonstrates the value of the conjure system in buffering against large scale censorship

ahead of significant events. In this case up to 95k users/hour stayed online because of the Conjure

system.

3.6 Operating Conjure in Production

The internet itself is a complex system that involves many parties with complex relationships.

Building and maintaining a refraction networking system without interfering in the existing rela-

tionships and functionalities is in itself a challenge as we build one complex system out of another.

In this section we examine the performance of the Conjure system and trends we see within the

outline some of the operational challenges that the current refraction deployment has met and the

solutions that we have applied. These range from implementation efforts to protect interests of ISP

partners, scaling services as our client grows, and adapting to the distributed structure required by

ISP scale tap deployment.

3.6.1 Minimizing Destructive Impact on the Larger System

Refraction networking interacts with the surrounding networking infrastructure in different

ways than any other transport protocols. This has specific implications for the way that Conjure

and other refraction networking technologies can be fingerprinted and coexist with other networking

entities like downstream users and services. Currently Conjure employs several strategies to prevent

overwhelming impact on downstream networks.

72

3.6.1.1 Session Identification & Authorization

The Conjure system has two concerns when answering connections to phantom addresses.

The first concern is that we not interfere with traffic destined for legitimate downstream services.

The second is that we pick up for connections that the station will be able to serve (processed and

ingested a valid registration) - limiting the resources that are committed to connections that we

cannot serve and preventing active probing attacks attempt to identify listening phantoms.

To address these concerns in IPv4 we require that the incoming connection matches on

both source and destination (phantom) address. In IPv6 we limit to destination address as there

is a significantly lower likelihood of address collisions between existing downstream services and

phantom addresses. However, this policy could be made more strict in both IPv4 and IPv6 by 1)

matching on source in IPv6 and 2) matching on destination port number which is not currently

enabled (all client traffic uses port 443) though is supported 3) matching client source port number

with clients calling bind before dial to ensure predictable source port value. Any of these this would

help to prevent a station from interfering with legitimate traffic unrelated to refraction networking

in the situation where the destination address is in the phantom subnet range.

3.6.1.2 Phantom Host Liveness

A related challenge requires stations to prevent live hosts from being chosen as phantoms. If

a downstream host that picks up / responds to TCP traffic is chosen as a phantom, when a client

attempts to connect both the station and the host will attempt to respond to the TCP connection

resulting in a race condition that will likely break the clients connection to the station. To prevent

this Conjure attempts to probe phantom addresses upon registration before allowing the client to

connect. A station is able to establish confidence that the phantom host will not interfere using

probes based on large scale probing work done by Durumeric et al. [29]. This process adds latency

between the registration phase and a registration being considered valid, but prevents more costly

connection retries. More complex interference can also occur, such as a client becoming active after

73

the liveness test is performed, or the liveness test provided a false negative because the connection

spoke the wrong protocol. One final consideration is that the liveness probing process will not be

able to detect scanned hosts as live if they are located behind a firewall. In this situation we rely on

the firewall to drop all of the unwanted ingress traffic and our address matching process to prevent

the station from interfering with legitimate connections that are permitted to pass through the

firewall.

The simplest solution to reduce the network interference caused by refraction connections

is to use phantom subnets that are routable but truly unused. However, these subnets provide

minimal value as there is no collateral cost associated with blocking them. More ideal subnets have

live clients / services that provide a significant cost to Censors when blocked, though preventing

interference becomes a larger concern.

3.6.2 Scalability

By design refraction networking schemes operate at scale as the middleboxes of the internet

transfer large volumes of traffic continuously. This was one of the primary focuses of “An ISP-scale

deployment of TapDance” which evaluated the ability of refraction networking to scale to the traffic

rates of ISPs [49]. This work identified coordination between refraction taps deployed at disparate

ingress points in the ISP network as a central challenge to deploying a successful refraction proxy.

In both refraction networking schemes that have seen production deployment this is solved

using some manner of centralized coordination server. However, using centralized coordination

systems has some drawbacks as deployments scale beyond individual ISPs. First in its current

configuration all Conjure stations are notified about all registration, even if the phantom address

associated with the registration is guaranteed to route past a different station. Second, the cen-

tralized registration sharing API is located geographically close to one ISP, however as more geo-

graphically diverse stations come online the delay from sharing over a remote API grows. Further

independent ISPs may not want to directly share the refraction registrations that they serve with

other networks, especially if the phantom address selected guarantees that the other network will

74

not be able to serve the client or worse, will potentially interfere with the connection. Finally

independent networks might wish to host their own completely independent refraction network

deployment while still allowing clients to interoperate.

3.6.2.1 Traffic Management

One primary source of scaling that refraction stations must address is the amount of tap

traffic that is processed by the station in order to identify participating client packets. Currently

the taps operate we operate process 10 - 60 Gbps traffic without saturating cores, however higher

bandwidth links are becoming commonplace. One promising strategy that could be employed to

scale further is to pre-filter the traffic that is mirrored to the refraction station. For Conjure

specifically there is no need to operate on server response traffic which means that all traffic from

server to client can be thrown out as not participating in the Conjure system. We find that a

majority of the traffic that transits the tapped links is actually server-to-client traffic. The exact

proportion changes by partner network, as research and academic networks seem to have a lower

proportion than commodity networks. This makes a network based reduction in traffic as simple

as filtering the mirror traffic with a rule like: “not src port 443” which will remove all server-

to-client TLS traffic. Network appliances are specially designed to perform filtering operations like

this at high speed.

Traffic management is also a central concern of ISP partners as there are complex legal

implications associated with providing external organizations access to (in some cases unencrypted)

customer traffic. One potential avenue to reduce this concern is to provide phantom addresses only

from unused allocations though, as discussed before, this reduces the collateral impact to censors

who broadly blocklist phantom subnets.

Figure 3.8 demonstrates the effective reduction seen when applying several potential filtering

strategies to tap traffic. Filtering to not src port 443 provides a more moderate 2–3x reduction,

but maintains all flexibility for the station. Filtering to dst port 443 only results in a consistently

large reduction ratio (6–20x less traffic), but limits the flexibility of the refraction station. However,

75

Figure 3.8: Tap Traffic Filter Percent - One opportunity for reducing the overhead that stations
incur is to prevent taps from forwarding irrelevant traffic. Here we examine several filters and their
average hourly traffic compared to the raw tap over a two day period.

this strategy has the benefit of limiting the traffic that the station is able to see to client-to-server

TLS traffic, almost all of which is encrypted, potentially limiting the perceived risk for partners.

Filtering out traffic with the source port in the privileged range (less than 1024) is potentially the

most promising strategy, providing a middle of the road compromise allowing for flexibility in the

destination port that Conjure stations can use for transports, limiting the amount of data that the

station receives relating to the most common protocols, and providing a reduction of 3–5x in traffic

volume.

3.6.2.2 Distributed Session Management

The distributed deployment displayed in fig. 3.2 introduces two challenges related to scaling

session management in the Conjure system. This happens specifically in deployments with multiple

stations at independent tap locations that share a single public key. The first challenge involves

traffic that routes past more than one station. In one partner ISP deploying this configuration it is

not guaranteed that a flow will only traverse a single tapped link. If a registered flow that routes

past more than one station were to attempt to connect it would result in both stations attempting

to service the connection - each sending a SYNACK to answer the client with an independent se-

76

quence number. The client then establishes their connection using the first SYNACK that it receives

transmitting their ACK and subsequent data. To the second station it appears as though the client

is using incorrect sequence/acknowledgement numbers which results in the second station tearing

down the connection with a RST. In order to accommodate this configuration and prevent the con-

tention in session establishment stations can provide either an allowlist of phantom subnets that

will be affirmatively supported, or a blocklist of phantom subnets that the station will ignore.

This leads into the second issue with distributed session management, which is ensuring

that the station responsible for answering a connection is notified of the registration in time. It is

important to note that the centralizing API is not aware of the allowlists or blocklists of the various

stations, and dynamic changes in routing policy could change which station is responsible for picking

up an incoming connection even without a change to the station configurations. Because of this,

the centralizing api notifies all stations of all incoming registrations and then stations themselves

are responsible for deciding which they ingest and attempt to service. This is done by applying

allowlists and blocklists early in the registration ingest pipeline to prevent stations from expending

resources on connections that they will be unable to serve - for example committing a thread to

perform a liveness test against a phantom address that the station cannot serve.

3.6.2.3 Federating Independent Refraction Deployments

The threat model that we propose when considering independent refraction constellations

is similar to that of the Tor network [24]. Each deployment operates independently and shares

registrations only to nodes that it operates via registration sharing API. This mutual distrust at

the deployment scale ensures minimal leakage of client information while maintaining functionality.

To allow clients to connect to any one of these independent deployments we propose an extension

of the current client configuration system. This would allow a station to serve a client configuration

that specifies the types of registrations that are supported, the decoys that can be used (when using

the decoy registrar), the phantoms that can be used (if unidirectional registration is supported),

and the stations public keys. Refraction clients are distributed with some initial configurations, but

77

on initial connection they can pull new or updated configurations from each independent refraction

deployment. Further trusted stations can link configurations of external deployments such that

clients can connect to independent deployments not included in the initial configuration set. This

would allow clients to discover new deployments without direct technical involvement in updating

the list of client configuration endpoints, or downloading a new APK.

Satisfying these design requirements and allowing users to form connections through inde-

pendent refraction deployments will assist in growing refraction networking as a proxy technique

by dispersing any risk of retaliation across independent parties, making the system as a whole more

difficult to block.

3.7 Challenges & Open Questions Relating to Refraction

Refraction networking benefits from the design lessons learned from other proxy technologies,

but it also experiences some open challenges unique to its own design. In this section we outline

some of those unique challenges and potential jumping off points for future investigation.

3.7.1 Routing Predictability

As discussed in Section 3.3.2 effective ways to distribute refraction networking stations in

order to achieve greater coverage and resist blocking have been investigated in response to routing

capable censors. However, production refraction networking deployments suffer an inverse problem.

The ISPs that deploy refraction stations are static and the address spaces that route past them

may be different from various vantage points around the world. The simplest situation to consider

here is an address block which is connected to the internet via one upstream provider. While the

global internet can use that address block as phantoms, the same may not be possible for clients

inside that network as they may have a more direct connection that doesn’t route past the station.

For clients internal to the network, every external address becomes a potential phantom address

as traffic will route past an ISP tap. Extrapolating from this simple example, transit ISPs provide

a unique challenge as predicting routes that transit their network is much more dependent on the

78

ISP peerings between the client and the participating transit ISP.

3.7.2 Key Management

Currently Conjure does not support a simple process for updating the keys that are used to

connect, however large scale adoption involving multiple independent deployments would require

some mechanism to achieve this. An ideal mechanism for doing so would be transparent to users al-

lowing them to connect continuously without opening the door to censors to impersonate refraction

stations. Additionally station operators may wish to deploy relatively independent keys at each

station in a dependent deployment, preventing any one station that becomes compromised from

effecting client traffic to other stations. One feasible solution would be to expand the dynamically

delivered client configuration to include a list of keys associated with other public refraction de-

ployments based on some consensus that prevents any one party from fabricating key information

of another, similar to the design of the Tor consensus. This necessarily introduces its own design

and operation issues. For now, key management remains an open challenge for a growing refraction

ecosystem.

3.7.3 Quantifying Censorship in IPv6

As discussed IPv6 provides a significantly expanded opportunity to spread the phantom

addresses that clients use. It also lowers the barrier for entry as publicly routable subnets are easier

to acquire in IPv6. Conjure currently supports IPv6 phantom subnets and treats them as nearly

identical to IPv4 from the perspective of censorship circumvention, however it is not clear that

censorship in IPv6 will be directly comparable with IPv4 as the dynamics of blocking by IP or

subnet change when address availability increases. For this reason it is important both for Conjure

and more generally to understand how the censorship regimes in IPv6 compare the the relatively

well studied systems that are applied to IPv4 traffic.

79

3.8 Conclusion

Refraction networking systems have gone through several iterations now from proposal,

through proof-of-concept , into deployment. The feedback from previous deployments motivated

the design of the conjure system which has not seen a substantial deployment itself. However, the

Conjure deployment is unique in that it is now scaled to millions of daily users sending terabytes

of traffic per hour introduces new and unique scaling challenges given the context of refraction

networking.

In this work we cover the current design (and motivation) for the Conjure deployment as it

exists today. We also cover the strategies that we have employed in scaling and adapting Conjure to

accommodate the scaline usage as well as scaling deployment and requirements from partner ISPs.

These efforts have driven measurement and feature integration to ensure that the impact of Conjure

on non-refraction traffic and hosts is minimal, and that clients can securely connect in countries

where censorship circumvention makes the biggest difference. We cover latest developments in the

conjure system. Adding support for new bidirectional registrations and new out-of-band registrars

gets users connected to Conjure faster and more reliably than ever. Once registered traffic analysis

resistant transports create a defense in depth for securing and obfuscating client traffic.

By quantifying the impact of refraction and creating well defined strategies for managing

and federating independent deployments refraction can safely scale as a part of the censorship

circumvention ecosystem.

Chapter 4

Mechanizing WebAssembly for Censorship Circumvention

As Internet censors rapidly evolve new blocking techniques, circumvention tools must also

adapt and roll out new strategies to remain unblocked. But new strategies can be time consuming

for circumventors to develop and deploy, and usually an update to one tool often requires significant

additional effort to be ported to others. Moreover, distributing the updated application across

different platforms poses its own set of challenges.

In this chapter, we introduce WATER (WebAssembly Transport Executables Runtime), a

novel approach to pluggable transport design that enables applications to use a WebAssembly-based

application-layer to obfuscate network traffic (e.g., TLS). Deploying a new circumvention technique

with WATER only requires distributing the WebAssembly Transport Module(WATM) binary and

any transport-specific configuration, allowing dynamic transport updates without any change to

the application itself. WATMs are also designed to be generic such that different applications using

WATER can use the same WATM to rapidly deploy successful circumvention techniques to their

own users, facilitating rapid interoperability between independent circumvention tools.

Censors do not often give notice before deploying new blocking techniques, so circumvention

tools must be able to adapt quickly. At the same time, the better that circumvention tools blend in

with normal traffic the higher the false positive rate for censors — i.e the more benign traffic that

is blocked, increasing collateral cost. WATER helps shrink this cycle from blocking to deployment

by providing a uniform interface to rapidly transition to any protocol that remains unblocked.

81

4.1 Introduction

The arms race between censors and circumventors continues to evolve with new tools and

tactics emerging from both sides: Censors deploy new mechanisms that block proxies, and in

response circumventors develop new techniques that get around the blocking [134, 3, 139, 124].

Because of it’s dynamic nature, successful circumvention tools must continually develop and

deploy new strategies and techniques to get around emerging censorship. For instance, in 2012,

Iran blocked several proxies, including Tor, by using an early form of SSL fingerprinting [100]. In

response, Tor developed obfsproxy [102], which encrypts all of its traffic including protocol headers

in an attempt to evade protocol fingerprinting attacks [53, 67]. While successful in the short term,

this was again insufficient as in censors like China deployed active probing attacks to detect

early versions of the protocol [131, 36], which prompted circumventors to develop probe-resistant

proxies [132, 141]. Censors then found and exploited other side-channels and vulnerabilities to

differentiate circumvention traffic [3, 52]. Once these problems were addressed, censors began using

other features to detect and block fully-encrypted proxies such as entropy measurements [134], and

circumventors responded by using prefixes that fool these measurements [47, 134].

Discovering, implementing, and operationalizing circumvention techniques like these can be

burdensome, requiring new code and configurations to be written, packaged, approved for distribu-

tion by app stores, and pushed to users. Furthermore, each circumvention tool may need to write

and maintain their own version specific to their environment, potentially built using an entirely

different programming language, adding to the cost.

In this paper, we introduce an approach to ease the burden of developing and deploying

new circumvention techniques in the ongoing censorship arms race. Our technique, WATER (We-

bAssembly Transport Executables Runtime), uses WebAssembly, a binary instruction format that

has runtime support across several platforms including web browsers and mobile devices. We-

bAssembly applications can be written in high-level languages like C or Rust, and compiled to a

cross-platform binary. These binaries can make low-level system calls to make network connections,

82

Application built w/ WATERAppData

?

Application built w/ WATERAppData

W.A.T.E.R.

Application built w/ WATERAppData

.wasm Transport Specs

Remote Peer

obfs4

Censor

Figure 4.1: The overview of WATER’s role in action. With transport specs defined by .wasm files
distributed out-of-band, WATER can efficiently switch between transports to use.

thanks to standards like the WebAssembly System Interface (WASI) [20]. We extend these tools

and standards to make WATER, a library that allows circumvention tools to integrate portable

circumvention techniques.

To use WATER, a circumvention tool integrates our WATER library in their client. Then,

circumventors can build cross-platform WATER binaries that implement new circumvention tech-

niques. These WATER binaries can be distributed to users over existing data channels. For in-

stance, a technique that implements a fully-encrypted proxy could be written once, and distributed

to a myriad of circumvention tools as a WATM, despite the tools using different software languages

and libraries.

Because WATER binaries can be shared as data, they can be easier to distribute than existing

software updates, which may have to take place over censored mobile app stores or through blocked

CDNs. In contrast, WATER binaries can be distributed over any available channel.

WATER has a distinct advantage over prior approaches that provide similar flexibility, such

as Proteus [122] or Pluggable Transports [60]. Because WATER leverages WebAssembly, new tech-

niques can be written in one of several (and growing [127]) high-level languages. In contrast, Proteus

83

requires techniques be written in a bespoke domain-specific language (DSL) that limit imports of

other code or libraries, and must be entirely self-contained. Meanwhile, Pluggable Transports must

maintain a separate language-specific API for each supported programming language (currently

Go, Java, and Swift). In contrast, WATER binaries can run in any WASI-compatible runtime,

which currently includes support for Go, Rust, Python, C/C++, etc. [129], and can be compiled

from multiple languages including Rust and Go [127], which are among the most popular pro-

gramming languages used by the circumvention community. In addition, WATER is positioned to

take advantage of future WASI developments as the standard becomes more widely supported and

feature-rich.

In the remainder of this paper, we describe our design of WATER, implement several proof-

of-concept WATER binaries, and compare their flexibility and performance to existing tools.

4.2 Related Work

Several prior works have focused on providing protocol agility to circumvention tools. We

detail these, and describe their differences to WATER below.

(Tor’s) Pluggable Transports [60] offers a standardized interface that different tools

can integrate into. This allows circumvention tools (like Tor) that implement the pluggable trans-

port specification to easily add code for new circumvention transports at compile time. However,

Pluggable Transport interfaces are language-specific, and currently only Go, Java, and Swift are

supported [73], making it difficult to create cross-platform transports that work in multiple projects

written in different languages.

Proteus implements an alternate method of dynamically deploying new transports. It

compiles text-based protocol specification files (PSF) and executes them at low-level with Rust,

improving the flexibility in deployment without losing too much performance [122]. However,

Proteus requires the use of a DSL that forces developers to use a Rust-based syntax and adopt a

restrictive programming style when developing a PSF. This prevents the direct incorporation of

existing tools and increases the difficulty of designing transports from scratch. Also, as Proteus

84

is implemented in Rust, it is challenging to integrate Proteus into projects in other programming

languages.

Marionette is a configurable network traffic obfuscation system used to counter censorship

based on DPI [32]. It uses text-based message templates to apply format-transforming-encryption

(FTE) to encode client traffic into benign looking packets. The templates are constructed using a

DSL along with some customizable encoding and encryption operations. The DSL is not Turing-

complete and is relatively restrictive. To support more complex protocols, Marionette provides

an interface for plugins which requires some degree of recompilation and therefore still requires

redeployment.

4.3 Design

There are two key components in WATER: 1) a runtime library that is integrated into a cir-

cumvention tool to allow it to run WATER binaries and 2) a WebAssembly-based Transport Module

(WATM) that is the interchangeable WATER binary implemetning a particular circumvention or

transport encoding technique.

4.3.1 WATER Runtime Library

The runtime library is designed to be easy to integrate into circumvention tools, allowing them

to run interchangeable WATM binaries that implement different circumvention strategies. The

runtime library provides a WASM runtime environment for running the WATM binaries, and also

presents a standard interface between the integrating circumvention client and the interchangeable

WATM binary. This allows the client to make calls to the WATM binary regardless of what it is

(e.g. _water_connect()), and for the WATM binary to be able to interface with external resources

(e.g. make TCP connections, logging, etc.).

As depicted in Figure 4.3.1 — when the client calls water_connect() in the runtime library,

the WASM module is launched, and the WATM-defined connect method is invoked. This method

may choose to make a TCP connection (or multiple), which it does by calling connect provided

85
Figure 4.2: Example connection establish-
ment flows of traditional client (Dialer) and
server(Listener) each using a WATER trans-
port. The dialer actively connects to a remote
host upon request by caller, with the WATER
network interface internally managing sockets
and IO allowing the WATM to transforms the
byte stream. Similarly, the listener accept the
incoming connections, allowing the WATM to
attempt a handshake with the remote host be-
fore firing an accept hook passing the plaintext
end to an upstream handler.

WATER API DestinationDialer
Connect

Connect

Transport Handshake

WATER API SourceListener
Connect

WATM module Network Interface

Abstraction

Accept

AppData Transport[AppData]

Transport Handshake

AppData Transport[AppData]

Application

Censor

by the runtime library. Then, the runtime library returns a virtual socket to the client. When

the client writes to the virtual socket, the runtime library passes the data to a WATM-defined

write, which can encode it however it chooses and send it out its corresponding TCP connection.

Similarly, when the client reads from the virtual socket, it does so through the runtime library and

WATM-defined read function, allowing the WASM module to transform received data. In short,

the WATM binary can make arbitrary transformations to the data sent by the client or received

from the network in order to implement any circumvention technique.

WATER also supports server-side connections, by similarly implementing corresponding

listen and accept.

4.3.2 WebAssembly Transport Module(WATM)

A WebAssembly Transport Module (WATM) is a program compiled to a WebAssembly binary

that implements a specific set of functions, allowing the WATER runtime to interact in a consistent

manner while allowing interchangeable WATMs the flexibility to apply arbitrary transformations

to network traffic. For example, WATM binaries could wrap a stream in TLS (implementing TLS

within the WASM binary), could add reliability layers (e.g. TurboTunnel [43], or could arbitrarily

shape traffic by changing the timing or size of packets sent. The set of exposed functions provided

by the WATER runtime library allows the WATM binary to interact with the network interface

abstraction and the runtime core to manage things like configuration, sockets, cancellation, and

86

logging.

As Rust is one of the most mature languages for writing WebAssembly modules, we used

it for our initial WATM binary prototypes. However, we note that any language that can be

compiled to WebAssembly could be used in the future, and that the resulting binaries can run in

any WATER-compatible runtime.

4.3.3 Security Consideration

While WebAssembly provides substantial isolation between the transport module and the

runtime library, significantly mitigating the risk of attackers executing malicious code, we note that

WebAssembly is not inherently impervious to binary-based attacks [81]. The isolation provided is

a strong defense, reducing the likelihood of adverse security impacts on the host environment.

However, even with this isolation, malicious WATM binaries could still make arbitrary connections

and potentially leak sensitive data from a circumvention tool that uses an arbitrary WATM binary.

As with any software, it is important that we provide a path of trust, using things like code

signing and verification to ensure that the WATM binary that a client chooses to run is trusted by

the deploying application. This is also true of other circumvention tools working with pluggable

elements, though those are often integrated at compile time. For example, the Tor project packages

and signs pluggable transports that are then launched with execve on the client. The WATMs

used by WATER clients are similar, in that they should be packaged and signed by trusted parties

(e.g. circumvention tool developers) before being loaded into a circumvention tool.

4.4 Implementation

4.4.1 Runtime Library

We have written WATER runtime libraries in both Go and Rust to demonstrate the cross-

platform and cross-language abilities of our approach. Each library provides a network program-

ming interface mirroring that of the standard library for their respective programming language. To

87

avoid excessive duplicated work in implementing a new WebAssembly runtime and keep the design

of WATER maximally runtime-independent, we only employed standard WebAssembly and WASI

interfaces which must be implemented by every runtime library that implements the current stable

standard in full [4, 117, 6, 48]. Currently, both versions of WATER are built with wasmtime [4].

In addition, we will provide starter code, examples, and detailed documentation for developers

to build their tool with WATER. The open-source repository will be made public at a later time.

4.4.2 WebAssembly Transport Module (WATM)

Currently Rust (and C via Rust ffi) is the only language with complete support for compilation

to WebAssembly + WASI. Support for wasm-wasi compile targets in other languages are a work

in progress by the WASM community [107]. As support for the wasm-wasi compile target is added

to more languages, it will ony become easier for circumvention developers to adapt their existing

codebase to run as WATMs. For languages like golang, which is popular with circumvention

developers, porting an existing library will likely be as simple as and implementing an interface

allowing the WATER runtime to configure and launch the WATM with the appropriate role(s)

from the original library (client, server, peer, etc.).

4.4.2.1 Provided Examples

A few example WATMs are provided by us to demonstrate the viability.

plain.wasm implements an identity transform WATM that simply forwards the bytes as-

received bidirectionally.

reverse.wasm reverses the bytes passed (e.g., from ABCD to DCBA) before writing the result

to the other end.

shadowsocks.wasm demonstrates that WATMs can implement more complex protocols,

such as Shadowsocks. Rather than mimic Shadowsocks as prior work has done, WATER is able to

build the real Shadowsocks protocol that works with an unmodified server running shadowsocks-

rust [23] v1.17.0. To build the shadowsocks.wasm, we started with the showsocks-rust code, and

88

identified a 417-line file that implements the core part of Shadowsocks (i.e. encryption, decryption,

and message framing). We removed all but the default features to minimize code size, and added

142(15% of total) lines of wrapping code to interface with our WATM template (more details are

provided in Appendix A.3).

Reusing the original codebase allows us to easily apply updates to our shadowsocks.wasm

based on upstream changes. For example, we successfully applied the exact patch [56] used by

shadowsocks-rust to defend against the China’s blocking of fully-encrypted protocols [134], without

any changes to the patch.

4.5 Evaluation

We evaluated our WATER implementation, and compared latency and throughput with

Proteus [122] and native network performance. The evaluation was conducted on the CloudLab

testbed [28] on c6525-25g (16-core AMD 7302P at 3.00GHz, 128GB ECC RAM).

4.5.1 Performance Metrics

Travel through Latency Throughput

vanilla-SS(Baseline) 116us 2310 Mbps
WATER-SS-v1 +493us 2.0%
Proteus-SS +873us 4.8%

Raw TCP(Baseline) 26us 2210 Mbps
WATER-plain-v1 +356us 82.8%
Proteus-plain +250us 105.4%

Table 4.1: Latency & Throughput benchmark result comparing to the baseline data, with
msg_size=512. It is worth noting that an implementation can be running slow enough to com-
bine multiple messages into one single send() therefore achieving better throughput than baseline,
which has TCP_NODELAY enabled.

Our analysis of WATER’s performance is based on experiments for two different transport

protocols comparing WATER, Proteus, and native implementations: plain and shadowsocks. We

compare the performance of each on a set of writes using buffer sizes ranging from from 1B to

89

4096B as buffer size can have a noticeable impact on latency and throughput. For baseline native

implementations we use raw TCP for plain, and vanilla shadowsocks-rust for shadowsocks. In

proteus we use a psf implementing an identity transform for the plain protocol, and the shadowsocks

psf implemented as part of the original paper [122] for the shadowsocks. We note that while the

shadowsocks psf obfuscates packets using the shadowsocks format it does not actually implement

the shadowsocks protocol.

Focusing on the 512-byte packet size, the shadowsocks variant of WATER demonstrated

throughput comparable to Proteus, but with improved latency. In the plain setup, WATER closely

matched the performance of native TCP in both latency and throughput. Despite WebAssembly’s

virtualization introducing a discernible overhead compared to native methods, WATER’s perfor-

mance is highly promising.

The notable degradation in throughput for both WATER and Proteus when evaluating shad-

owsocks is in large part due to the additional cryptographic operations required. WebAssembly

runtimes currently lack hardware acceleration for these operations, resulting is higher latency and

lower throughput. However, support for hardware acceleration is being actively considered by the

WebAssembly community [128], and we anticipate that this will significantly improve WATER’s

performance in the future. We examine the performance of cryptographic operations in WebAssem-

bly further in Appendix A.2.

Along with this we note that within the testbed the experiments were capable of saturating

the network link resulting in over 2 Gbps for the native transports. When we consider that WATER-

shadowsocks achieved around 50 Mbps, we believe that WATER is unlikely to be the bottleneck

for most real-world circumvention applications. Further performance based analysis can be found

in Appendix A.4.

90

4.6 Discussion

4.6.1 Advantages and Limitations

Maximized code reuse Beyond the transferability of the WATMs, the use of WebAssem-

bly also enables existing tools (implemented in languages capable of compiling to WASM) to easily

be converted into new WATM modules. Appendix A.3.2 investigates this further, examining the

code changes we made while porting an existing circumvention tool to WATER.

(Temporary) WebAssembly Limitations Given the limited official support for WASI

in other languages, all of our proof-of-concept WATM modules are implemented in Rust. However,

we see promising trends indicating that other programming languages are making efforts to support

compilation to WebAssembly using WASI standards. For example, TinyGo can be compiled into

WebAssembly (though there are currently some performance drawbacks relating to the golang

garbage collector). Go is widely used by the censorship circumvention community and demonstrates

the potential that growing WASI support provides alongside WATER.

We recognize that the use of WebAssembly introduces non-negligible overhead, due in part to

the lack of hardware acceleration support for cryptographic operations. However, WebAssembly is a

rapidly evolving technology with a large and active community working to bring features like secure

randomness sources, cryptographic acceleration, and network socket access into standards [128]. We

expect that these features will only improve the potential of WATER.

4.6.2 Future Work

Our current primary focus is to ensure that WATER is a production ready technology. We

plan on working with several stakeholders to deploy WATER to real world users facilitating rapid

and interoperable new circumvention techniques.

WATER could also assist in the discovery of new circumvention techniques. With tools like

OONI [45], Censored Planet [115], and Ripe Atlas [113] the set of probes available is rigid and

limited by the software on the available vantage points — promoting a focus on WHAT is blocked.

91

Using WATER we could instead focus on HOW network traffic is blocked by rapidly iterating on

probing experiments without redeploying entire applications.

Finally we intend to explore the use of Pseudo Random Functions (PRFs) in WATMs such

that the each WATM could have its own unique version of a transport protocol. This would allow

for the creation of a large number of unique transports within a class making it more difficult for

censors to block users at scale.

We believe that this work only scratches the surface of the potential that WebAssembly has

to offer in the circumvention space. We hope that this work inspires further exploration of the use

of WebAssembly in circumvention tools.

4.7 Conclusion

By lowering the barriers of deploying circumvention techniques using WATER, we simplify the

deployment cycle down to the delivery of a new binary file to user’s device. We use WebAssembly

to provide a sandboxed environment for safely running these binaries, and provide network libraries

to facilitate integration into existing circumvention tools.

Chapter 5

Conclusion

In this thesis I have investigated the design of secure systems with a specific focus on a unique

resilience property. This property leverages the power that collateral cost has on the adversarial

parties to make directed attempts to prevent the system from being used.

5.1 ExSpectre: Achieving Non-Deterministic Behavior using Spectre

We begin in Chapter chapter 2 in the context of hardware based secure computation.

Speculative execution is such a benefit to performance that it will never be completely re-

moved from modern processors. However, using speculative execution we can design cooperating

programs that hide their core logic from inspection / introspection. This is a demonstration that

modern processors cannot simply use static/dynamic analysis to model the complete scope of the

behavior that a program can exhibit.

For example, even with all of the efforts to mitigate speculative execution based attacks, type-

1 speculative execution still has no fix. This is because the direct branch predictor is so fundamental

to the performance of modern processors that it cannot be removed. In general existing speculative

execution mitigations are designed to prevent one program from exfiltrating data from an unwilling

program or portion of the system. This does not cover the case where the program itself is willing

and even cooperating in an attempt to have it’s behavior influenced by another.

This is the core principle of the ExSpectre. By leaning into the non-determinism of the

speculative execution functionality that we are unwilling to give up, ExSpectre demonstrates that

93

we allow (sets of) programs to leverage and influence each other in order to hide their core logic in

this non-determinism.

5.2 Refraction Networking

While hardware security and ExSpectre provide a relatively direct measure of the trade-off

inherent in the collateral cost of system design choices, the cost is not always so tangible.

In Chapter chapter 3 we take a broader view of the effect that designing with collateral cost

in mind can have on secure systems. We explore the way that Refraction Networking can be used

to provide more robust and resilient censorship circumvention.

Participation in IP based networks is virtually a requirement for countries participating in

the modern global economy.

It is difficult to know exactly what exists at the edge of a remote section of the Internet.

Cutting of a section of the Internet is a blunt tool that can have significant economic impact. In

the extreme cases countries have been known to cut off access to the external Internet entirely.

However this has always been a temporary measure only employed in the most extreme cases

because of the economic impact.

Traditionally censors have worked to identify individual hosts that provide circumvention

services and block them. This is a game of cat and mouse from innovation to deployment to

discovery to blocking of individual hosts is generally disfavorable for circumvention tools.

5.3 Water: WebAssembly Transport Design

In the context of censorship circumvention, the collateral cost of a large scale system depends

not only on who is blocked, but also what is blocked. A key part of the cat-and-mouse game that is

circumvention tool deployment and discovery is in identifying network protocols that can be used

to ferry traffic without presenting unique characteristics. Originally this meant removing things

like plaintext keywords, but as censors have become more discerning this has includes things like

the ordering of the set of cipher-suites offered by TLS [3] or the entropy present in any given data

94

packet [134]. When a new blocking strategy targeting one of these features is deployed, it can be a

significant effort to adapt existing circumvention tools to avoid detection. And each tool must be

adapted individually in their native source language.

This inflexibility provides censors with a significant advantage. In Chapter chapter 4 we

explore the design of a system that can be used to close this gap. Using the dynamic deployment

techniques of WebAssembly, we propose a transport model that allows the on-the-wire profile that

any given proxy presents to be rapidly reconfigured. This means that transports can be written

once and shared to many clients across platforms and source languages. It also means that when a

new blocking strategy is deployed, a variety of strategies can be deployed to get a thorough sense

of what types of traffic remain unblocked.

Our proof of concept implementation of WATER demonstrates that it this is a viable approach

to circumvention, and that the overhead of WebAssembly is reasonable for this use case (and likely

to improve as the WebAssembly ecosystem continues to mature).

The theory behind this work is that the increased agility in transport design and deployment

will allow circumvention traffic to adapt and blend in with whatever protocols remain unblocked –

aspirationally, giving circumvention developers an edge.

—

As a whole this thesis serves to demonstrate the value of centering collateral cost when

designing systems to be resistant to adversarial action. Specifically, identifying non-negotiable

characteristics (e.g. performance, connectivity, functionality) and building around them such that

the continued valuation and support of those characteristics ensure the functionality of your tool.

Bibliography

[1] Bitdefender antivirus technology, 2018.

[2] Onur Acıiçmez, Çetin Kaya Koç, and Jean-Pierre Seifert. Predicting secret keys via branch
prediction. In Cryptographers’ Track at the RSA Conference, pages 225–242. Springer, 2007.

[3] Alice, Bob, Carol, Jan Beznazwy, and Amir Houmansadr. How china detects and blocks
shadowsocks. In Proceedings of the ACM Internet Measurement Conference, IMC ’20, page
111–124, New York, NY, USA, 2020. Association for Computing Machinery.

[4] Bytecode Alliance. Wasmtime, Aug 2019.

[5] arma. Research problems: Ten ways to discover tor bridges. https://blog.torproject.
org/research-problems-ten-ways-discover-tor-bridges, 2011.

[6] Wasmer Authors. Wasmer: Run, publish & deploy any code, anywhere, Oct 2018.

[7] Dave Bakker, Dan Gohman, Lin Clark, Jiaxiao Zhou, Alex Crichton, John Edmonds, and Dan
Chiarlone. WebAssembly/wasi-sockets: WASI API proposal for managing sockets. https:
//github.com/WebAssembly/wasi-sockets, 2021. Accessed on 2023-10-06.

[8] Davide Balzarotti, Marco Cova, Christoph Karlberger, Engin Kirda, Christopher Kruegel,
and Giovanni Vigna. Efficient detection of split personalities in malware. In NDSS, 2010.

[9] Julian Bangert, Sergey Bratus, Rebecca Shapiro, and Sean W Smith. The page-fault weird
machine: Lessons in instruction-less computation. In WOOT, 2013.

[10] Davide B Bartolini, Philipp Miedl, and Lothar Thiele. On the capacity of thermal covert
channels in multicores. In Proceedings of the Eleventh European Conference on Computer
Systems, page 24. ACM, 2016.

[11] Jan Beznazwy and Amir Houmansadr. How china detects and blocks shadowsocks. In
Proceedings of the ACM Internet Measurement Conference, pages 111–124, 2020.

[12] Cecylia Bocovich and David Fifield. Snowflake. https://snowflake.torproject.org/.

[13] Cecylia Bocovich and Ian Goldberg. Slitheen: Perfectly imitated decoy routing through
traffic replacement. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 1702–1714, 2016.

[14] Sergey Bratus. What hacker research taught me. In Rss, 2009. Accessed: 2018-05-01.

https://blog.torproject.org/research-problems-ten-ways-discover-tor-bridges
https://blog.torproject.org/research-problems-ten-ways-discover-tor-bridges
https://github.com/WebAssembly/wasi-sockets
https://github.com/WebAssembly/wasi-sockets
https://snowflake.torproject.org/

96

[15] Sergey Bratus, Michael Locasto, Meredith Patterson, Len Sassaman, and Anna Shubina.
Exploit programming: From buffer overflows to weird machines and theory of computation.
{USENIX; login:}, 2011.

[16] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel Genkin, Baris Kasikci, Frank Piessens,
Mark Silberstein, Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx. Foreshadow: Ex-
tracting the keys to the intel SGX kingdom with transient out-of-order execution. In 27th
USENIX Security Symposium (USENIX Security 18), Baltimore, MD, 2018. USENIX Asso-
ciation.

[17] Gregory J Chaitin. Computing the busy beaver function. In Open Problems in
Communication and Computation, pages 108–112. Springer, 1987.

[18] Guoxing Chen, Sanchuan Chen, Yuan Xiao, Yinqian Zhang, Zhiqiang Lin, and Ten H Lai.
SGXPECTRE attacks: Leaking enclave secrets via speculative execution. arXiv preprint
arXiv:1802.09085, 2018.

[19] Richard Chirgwin. Google, aws ips blocked by russia in telegram crackdown. The
Register - https://www.theregister.com/2018/04/17/russia_blocks_google_aws_ip_
addresses_to_get_telegram/, 2018.

[20] Lin Clark. Standardizing WASI: A system interface to run WebAssembly outside the web,
Mar 2019.

[21] Sophia M D’Antoine. Exploiting processor side channels to enable cross VM malicious code
execution. PhD thesis, Rensselaer Polytechnic Institute, 2015.

[22] ShadowSocks developers. shadowsocks-crypto. https://github.com/shadowsocks/
shadowsocks-crypto, 2023.

[23] ShadowSocks developers. shadowsocks-rust. https://github.com/shadowsocks/
shadowsocks-rust, 2023.

[24] Roger Dingledine, Nick Mathewson, and Paul Syverson. Tor: The second-generation onion
router. Technical report, Naval Research Lab Washington DC, 2004.

[25] Eric Doerr. Securing our approach to domain fronting within
azure. https://www.microsoft.com/security/blog/2021/03/26/
securing-our-approach-to-domain-fronting-within-azure/, 2021.

[26] Frederick Douglas, Weiyang Pan, Matthew Caesar, et al. Salmon: Robust proxy distribution
for censorship circumvention. Proceedings on Privacy Enhancing Technologies, 2016(4):4–20,
2016.

[27] Arun Dunna, Ciarán O’Brien, and Phillipa Gill. Analyzing china’s blocking of unpublished
tor bridges. In 8th {USENIX} Workshop on Free and Open Communications on the Internet
({FOCI} 18), 2018.

[28] Dmitry Duplyakin, Robert Ricci, Aleksander Maricq, Gary Wong, Jonathon Duerig, Eric
Eide, Leigh Stoller, Mike Hibler, David Johnson, Kirk Webb, Aditya Akella, Kuangch-
ing Wang, Glenn Ricart, Larry Landweber, Chip Elliott, Michael Zink, Emmanuel Cec-
chet, Snigdhaswin Kar, and Prabodh Mishra. The design and operation of CloudLab. In

https://www.theregister.com/2018/04/17/russia_blocks_google_aws_ip_addresses_to_get_telegram/
https://www.theregister.com/2018/04/17/russia_blocks_google_aws_ip_addresses_to_get_telegram/
https://github.com/shadowsocks/shadowsocks-crypto
https://github.com/shadowsocks/shadowsocks-crypto
https://github.com/shadowsocks/shadowsocks-rust
https://github.com/shadowsocks/shadowsocks-rust
https://www.microsoft.com/security/blog/2021/03/26/securing-our-approach-to-domain-fronting-within-azure/
https://www.microsoft.com/security/blog/2021/03/26/securing-our-approach-to-domain-fronting-within-azure/

97

Proceedings of the USENIX Annual Technical Conference (ATC), pages 1–14, Santa Clara,
CA, USA, July 2019. USENIX Association.

[29] Zakir Durumeric, Eric Wustrow, and J Alex Halderman. Zmap: Fast internet-wide scanning
and its security applications. In 22nd {USENIX} Security Symposium ({USENIX} Security
13), pages 605–620, 2013.

[30] Maurizio Dusi, Manuel Crotti, Francesco Gringoli, and Luca Salgarelli. Tunnel hunter:
Detecting application-layer tunnels with statistical fingerprinting. Computer Networks,
53(1):81–97, 2009.

[31] Kevin P Dyer, Scott E Coull, Thomas Ristenpart, and Thomas Shrimpton. Peek-a-boo, i
still see you: Why efficient traffic analysis countermeasures fail. In 2012 IEEE symposium on
security and privacy, pages 332–346. IEEE, 2012.

[32] Kevin P. Dyer, Scott E. Coull, and Thomas Shrimpton. Marionette: A programmable network
traffic obfuscation system. In 24th USENIX Security Symposium (USENIX Security 15),
pages 367–382, Washington, D.C., August 2015. USENIX Association.

[33] Manuel Egele, Theodoor Scholte, Engin Kirda, and Christopher Kruegel. A survey on au-
tomated dynamic malware-analysis techniques and tools. ACM computing surveys (CSUR),
44(2):6, 2012.

[34] Daniel Ellard, Christine Jones, Victoria Manfredi, W Timothy Strayer, Bishal Thapa, Megan
Van Welie, and Alden Jackson. Rebound: Decoy routing on asymmetric routes via error
messages. In 2015 IEEE 40th Conference on Local Computer Networks (LCN), pages 91–99.
IEEE, 2015.

[35] Roya Ensafi, David Fifield, Philipp Winter, Nick Feamster, Nicholas Weaver, and Vern Pax-
son. Examining how the great firewall discovers hidden circumvention servers. In Proceedings
of the 2015 Internet Measurement Conference, pages 445–458, 2015.

[36] Roya Ensafi, David Fifield, Philipp Winter, Nick Feamster, Nicholas Weaver, and Vern Pax-
son. Examining how the great firewall discovers hidden circumvention servers. In Proceedings
of the 2015 Internet Measurement Conference, IMC ’15, page 445–458, New York, NY, USA,
2015. Association for Computing Machinery.

[37] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. Covert channels through
branch predictors: a feasibility study. In Proceedings of the Fourth Workshop on Hardware
and Architectural Support for Security and Privacy, page 5. ACM, 2015.

[38] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. Jump over ASLR: Attack-
ing branch predictors to bypass ASLR. In 49th Annual IEEE/ACM International Symposium
on Microarchitecture (MICRO), pages 1–13. IEEE, 2016.

[39] Dmitry Evtyushkin, Dmitry Ponomarev, and Nael Abu-Ghazaleh. Understanding and mit-
igating covert channels through branch predictors. ACM Transactions on Architecture and
Code Optimization (TACO), 13(1):10, 2016.

[40] Dmitry Evtyushkin, Ryan Riley, Nael CSE Abu-Ghazaleh, Dmitry Ponomarev, et al.
Branchscope: A new side-channel attack on directional branch predictor. In Proceedings

98

of the Twenty-Third International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 693–707. ACM, 2018.

[41] David Fifield. Domain fronting to app engine stopped working. https://gitlab.
torproject.org/legacy/trac/-/issues/25804, 2018.

[42] David Fifield. Turbo tunnel, a good way to design censorship circumvention protocols. In
10th {USENIX} Workshop on Free and Open Communications on the Internet ({FOCI} 20),
2020.

[43] David Fifield. Turbo tunnel, a good way to design censorship circumvention protocols. In
10th USENIX Workshop on Free and Open Communications on the Internet (FOCI 20).
USENIX Association, August 2020.

[44] David Fifield, Chang Lan, Rod Hynes, Percy Wegmann, and Vern Paxson. Blocking-resistant
communication through domain fronting. Proceedings on Privacy Enhancing Technologies,
2015(2):46–64, 2015.

[45] Arturo Filasto and Jacob Appelbaum. Ooni: open observatory of network interference. In
FOCI, 2012.

[46] Agner Fog. Instruction tables: Lists of instruction latencies, throughputs and micro-operation
breakdowns for intel, AMD and VIA CPUs. Copenhagen University College of Engineering,
93:110, 2011.

[47] Vinicius Fortuna. Outlinevpn wiki: Disguise connections with a prefix to bypass protocol
allowlists, 2023.

[48] Cloud Native Computing Foundation. Wasmedge, Mar 2021.

[49] Sergey Frolov, Fred Douglas, Will Scott, Allison McDonald, Benjamin VanderSloot, Rod
Hynes, Adam Kruger, Michalis Kallitsis, David G Robinson, Steve Schultze, et al. An isp-scale
deployment of tapdance. In 7th {USENIX} Workshop on Free and Open Communications
on the Internet ({FOCI} 17), 2017.

[50] Sergey Frolov, Jack Wampler, Sze Chuen Tan, J Alex Halderman, Nikita Borisov, and Eric
Wustrow. Conjure: Summoning proxies from unused address space. In Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security, pages 2215–2229,
2019.

[51] Sergey Frolov, Jack Wampler, and Eric Wustrow. Detecting probe-resistant
proxies. In Network and Distributed System Security. The Internet Society.
https://www.ndss-symposium.org/wp-content/uploads/2020/02/23087.pdf, 2020.

[52] Sergey Frolov, Jack Wampler, and Eric Wustrow. Detecting probe-resistant proxies. In
Network and Distributed System Security Symposium, 2020.

[53] Sergey Frolov and Eric Wustrow. The use of tls in censorship circumvention. 2019.

[54] Daniel Genkin, Lev Pachmanov, Eran Tromer, and Yuval Yarom. Drive-by key-extraction
cache attacks from portable code. 2018.

https://gitlab.torproject.org/legacy/trac/-/issues/25804
https://gitlab.torproject.org/legacy/trac/-/issues/25804

99

[55] gera and riq. Advances in format string exploiting. Phrack Magazine , 59(7), July 2001.,
2001.

[56] gfw report. Shadowsocks patch for mitigating china gfw blocking of fully en-
crypted traffic. https://github.com/gfw-report/shadowsocks-rust/commit/
d1cf917deebe1999044ca93965a602223de26be7, 2022.

[57] gfw report. Sharing a modified shadowsocks as well as our thoughts on the cat-and-mouse
game. https://github.com/net4people/bbs/issues/136, 2022.

[58] Devashish Gosain, Anshika Agarwal, Sambuddho Chakravarty, and Hrishikesh B Acharya.
The devil’s in the details: Placing decoy routers in the internet. In Proceedings of the 33rd
Annual Computer Security Applications Conference, pages 577–589, 2017.

[59] Yashodhar Govil, Liang Wang, and Jennifer Rexford. {MIMIQ}: Masking ips with migration
in {QUIC}. In 10th {USENIX} Workshop on Free and Open Communications on the Internet
({FOCI} 20), 2020.

[60] Pluggable Transports Working Group. Pluggable transports, 2014.

[61] Serge Guelton. Spectre is not a Bug, it is a Feature. https://blog.quarkslab.com/
spectre-is-not-a-bug-it-is-a-feature.html, 2018.

[62] Fanglu Guo, Peter Ferrie, and Tzi-Cker Chiueh. A study of the packer problem and its
solutions. In International Workshop on Recent Advances in Intrusion Detection, pages
98–115. Springer, 2008.

[63] Rolf Herken. The universal Turing machine: A half-century survey. 1992.

[64] John Holowczak and Amir Houmansadr. Cachebrowser: Bypassing chinese censorship without
proxies using cached content. In Proceedings of the 22nd ACM SIGSAC Conference on
Computer and Communications Security, pages 70–83, 2015.

[65] Jann Horn. Project Zero: Reading privileged memory with a side-channel. https://
googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.
html, 2018. Accessed: 2018-05-01.

[66] Amir Houmansadr, Chad Brubaker, and Vitaly Shmatikov. The parrot is dead: Observing
unobservable network communications. In 2013 IEEE Symposium on Security and Privacy,
pages 65–79. IEEE, 2013.

[67] Amir Houmansadr, Chad Brubaker, and Vitaly Shmatikov. The parrot is dead: Observing
unobservable network communications. In 2013 IEEE Symposium on Security and Privacy,
pages 65–79, San Francisco, CA, 2013. Institute of Electrical and Electronics Engineers.

[68] Amir Houmansadr, Giang TK Nguyen, Matthew Caesar, and Nikita Borisov. Cirripede: Cir-
cumvention infrastructure using router redirection with plausible deniability. In Proceedings
of the 18th ACM conference on Computer and communications security, pages 187–200, 2011.

[69] Amir Houmansadr, Edmund L Wong, and Vitaly Shmatikov. No direction home: The true
cost of routing around decoys. In NDSS. Citeseer, 2014.

https://github.com/gfw-report/shadowsocks-rust/commit/d1cf917deebe1999044ca93965a602223de26be7
https://github.com/gfw-report/shadowsocks-rust/commit/d1cf917deebe1999044ca93965a602223de26be7
https://github.com/net4people/bbs/issues/136
https://blog.quarkslab.com/spectre-is-not-a-bug-it-is-a-feature.html
https://blog.quarkslab.com/spectre-is-not-a-bug-it-is-a-feature.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html

100

[70] Suman Jana and Vitaly Shmatikov. Abusing file processing in malware detectors for fun and
profit. In Security and Privacy (SP), 2012 IEEE Symposium on, pages 80–94. IEEE, 2012.

[71] Marc Juarez, Sadia Afroz, Gunes Acar, Claudia Diaz, and Rachel Greenstadt. A critical eval-
uation of website fingerprinting attacks. In Proceedings of the 2014 ACM SIGSAC Conference
on Computer and Communications Security, pages 263–274, 2014.

[72] Josh Karlin, Daniel Ellard, Alden W Jackson, Christine E Jones, Greg Lauer, David Mankins,
and W Timothy Strayer. Decoy routing: Toward unblockable internet communication. In
FOCI, 2011.

[73] Karl Kathuria, Simone Basso, Jon Camfield, vivivibo, and David Goulet. Pluggable-
transports/pluggable-transports-spec: This is a repository to track issues and suggestions
to the pluggable transports spec, 2017.

[74] Dhilung Kirat, Giovanni Vigna, and Christopher Kruegel. Barebox: efficient malware anal-
ysis on bare-metal. In Proceedings of the 27th Annual Computer Security Applications
Conference, pages 403–412. ACM, 2011.

[75] Dhilung Kirat, Giovanni Vigna, and Christopher Kruegel. Barecloud: Bare-metal analysis-
based evasive malware detection. In USENIX Security Symposium, pages 287–301, 2014.

[76] Vladimir Kiriansky and Carl Waldspurger. Speculative buffer overflows: Attacks and defenses.
arXiv preprint arXiv:1807.03757, 2018.

[77] Paul Kocher, Jann Horn, Anders Fogh, , Daniel Genkin, Daniel Gruss, Werner Haas, Mike
Hamburg, Moritz Lipp, Stefan Mangard, Thomas Prescher, Michael Schwarz, and Yuval
Yarom. Spectre attacks: Exploiting speculative execution. In 40th IEEE Symposium on
Security and Privacy (S&P’19), 2019.

[78] Butler W Lampson. A note on the confinement problem. Communications of the ACM,
16(10):613–615, 1973.

[79] William Landi. Undecidability of static analysis. ACM Letters on Programming Languages
and Systems (LOPLAS), 1(4):323–337, 1992.

[80] Sangho Lee, Ming-Wei Shih, Prasun Gera, Taesoo Kim, Hyesoon Kim, and Marcus Peinado.
Inferring fine-grained control flow inside SGX enclaves with branch shadowing. In 26th
USENIX Security Symposium, USENIX Security, pages 16–18, 2017.

[81] Daniel Lehmann, Johannes Kinder, and Michael Pradel. Everything old is new again: Binary
security of WebAssembly. In 29th USENIX Security Symposium (USENIX Security 20),
pages 217–234, Virtual Event, August 2020. USENIX Association.

[82] Martina Lindorfer, Clemens Kolbitsch, and Paolo Milani Comparetti. Detecting environment-
sensitive malware. In International Workshop on Recent Advances in Intrusion Detection,
pages 338–357. Springer, 2011.

[83] Zhen Ling, Junzhou Luo, Wei Yu, Ming Yang, and Xinwen Fu. Tor bridge discovery: extensive
analysis and large-scale empirical evaluation. IEEE Transactions on Parallel and Distributed
Systems, 26(7):1887–1899, 2013.

101

[84] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas Prescher, Werner Haas, Anders Fogh,
Jann Horn, Stefan Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom, and Mike Hamburg.
Meltdown: Reading kernel memory from user space. In 27th USENIX Security Symposium
(USENIX Security 18), 2018.

[85] Giorgi Maisuradze and Christian Rossow. Speculose: Analyzing the security implications of
speculative execution in CPUs. arXiv preprint arXiv:1801.04084, 2018.

[86] Ramya Jayaram Masti, Devendra Rai, Aanjhan Ranganathan, Christian Müller, Lothar
Thiele, and Srdjan Capkun. Thermal covert channels on multi-core platforms. In USENIX
Security Symposium, pages 865–880, 2015.

[87] Matt Miller. Analysis and mitigation of speculative store bypass (CVE-2018-3639), May 2018.

[88] Matt Miller. Analysis and mitigation of speculative store bypass (cve-2018-3639), 2018.

[89] Hooman Mohajeri Moghaddam, Baiyu Li, Mohammad Derakhshani, and Ian Goldberg.
Skypemorph: Protocol obfuscation for tor bridges. In Proceedings of the 2012 ACM
conference on Computer and communications security, pages 97–108, 2012.

[90] Andreas Moser, Christopher Kruegel, and Engin Kirda. Exploring multiple execution paths
for malware analysis. In Security and Privacy, 2007. SP’07. IEEE Symposium on, pages
231–245. IEEE, 2007.

[91] Milad Nasr and Amir Houmansadr. Game of decoys: Optimal decoy routing through
game theory. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pages 1727–1738, 2016.

[92] Milad Nasr, Hadi Zolfaghar, Amir Houmansadr, and Amirhossein Ghafari. Massbrowser:
Unblocking the censored web for the masses, by the masses. In Proceedings of the Network
and Distributed System Security Symposium, NDSS, 2020.

[93] Milad Nasr, Hadi Zolfaghari, and Amir Houmansadr. The waterfall of liberty: Decoy rout-
ing circumvention that resists routing attacks. In Proceedings of the 2017 ACM SIGSAC
Conference on Computer and Communications Security, pages 2037–2052, 2017.

[94] Jon Oberheide, Michael Bailey, and Farnam Jahanian. Polypack: an automated online pack-
ing service for optimal antivirus evasion. In Proceedings of the 3rd USENIX conference on
Offensive technologies, pages 9–9. USENIX Association, 2009.

[95] Dan O’Keeffe, Divya Muthukumaran, Pierre-Louis Aublin, Florian Kelbert, Christian Priebe,
Josh Lind, Huanzhou Zhu, and Peter Pietzuch. Spectre attack against SGX enclave, 2018.
Accessed: 2018-05-01.

[96] Aleph One. Smashing the stack for fun and profit. Phrack Magazine, 1996.

[97] Dag Arne Osvik, Adi Shamir, and Eran Tromer. Cache attacks and countermeasures: the
case of AES. In Cryptographers’ Track at the RSA Conference, pages 1–20. Springer, 2006.

[98] Roberto Paleari, Lorenzo Martignoni, Giampaolo Fresi Roglia, and Danilo Bruschi. A fistful of
red-pills: How to automatically generate procedures to detect CPU emulators. In Proceedings
of the USENIX Workshop on Offensive Technologies (WOOT), volume 41, page 86, 2009.

102

[99] Colin Percival. Cache missing for fun and profit, 2005.

[100] phobos. Iran partially blocks encrypted network traffic, Feb 2012.

[101] Giorgos Poulios, Christoforos Ntantogian, and Christos Xenakis. Ropinjector: Using return
oriented programming for polymorphism and antivirus evasion. Blackhat USA, 2015.

[102] The Tor Project. Tor project: obfsproxy, Feb 2012.

[103] Ganesan Ramalingam. The undecidability of aliasing. ACM Transactions on Programming
Languages and Systems (TOPLAS), 16(5):1467–1471, 1994.

[104] Reethika Ramesh, Ram Sundara Raman, Matthew Bernhard, Victor Ongkowijaya, Leonid
Evdokimov, Anne Edmundson, Steven Sprecher, Muhammad Ikram, and Roya Ensafi. De-
centralized control: A case study of russia. In Network and Distributed Systems Security
(NDSS) Symposium 2020, 2020.

[105] R. S. Richards and A. M. Brown. mov is turing-complete. Cl. Cam. Ac. Uk (2013), pages
1–4, 2013.

[106] Joanna Rutkowska. redpill... or how to detect VMM using (almost) one CPU instruction,
2004.

[107] sbinet. wasm: re-use //export mechanism for exporting identifiers within wasm modules,
May 2018.

[108] Max Schuchard, John Geddes, Christopher Thompson, and Nicholas Hopper. Routing around
decoys. In Proceedings of the 2012 ACM conference on Computer and communications
security, pages 85–96, 2012.

[109] Edward J Schwartz, Thanassis Avgerinos, and David Brumley. All you ever wanted to know
about dynamic taint analysis and forward symbolic execution (but might have been afraid to
ask). In Security and privacy (SP), 2010 IEEE symposium on, pages 317–331. IEEE, 2010.

[110] Michael Schwarz, Martin Schwarzl, Moritz Lipp, and Daniel Gruss. NetSpectre: Read arbi-
trary memory over network. 2018.

[111] Hovav Shacham. The geometry of innocent flesh on the bone: Return-into-libc without
function calls (on the x86). In Proceedings of the 14th ACM conference on Computer and
communications security, pages 552–561. ACM, 2007.

[112] Piyush Kumar Sharma, Devashish Gosain, Himanshu Sagar, Chaitanya Kumar, Aneesh
Dogra, Vinayak Naik, HB Acharya, and Sambuddho Chakravarty. Siegebreaker: An sdn
based practical decoy routing system. Proceedings on Privacy Enhancing Technologies,
2020(3):243–263, 2020.

[113] RIPE Ncc Staff. Ripe atlas: A global internet measurement network. Internet Protocol
Journal, 18(3):2–26, 2015.

[114] Nick Stephens, John Grosen, Christopher Salls, Andrew Dutcher, Ruoyu Wang, Jacopo Cor-
betta, Yan Shoshitaishvili, Christopher Kruegel, and Giovanni Vigna. Driller: Augmenting
fuzzing through selective symbolic execution. In NDSS, volume 16, pages 1–16, 2016.

103

[115] Ram Sundara Raman, Prerana Shenoy, Katharina Kohls, and Roya Ensafi. Censored planet:
An internet-wide, longitudinal censorship observatory. In Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security, pages 49–66, 2020.

[116] Arne Swinnen and Alaeddine Mesbahi. One packer to rule them all: Empirical identification,
comparison and circumvention of current antivirus detection techniques. BlackHat USA,
2014.

[117] Inc. Tetrate.io. wazero, May 2020.

[118] Alan M Turing. On computable numbers, with an application to the Entscheidungsproblem.
Proceedings of the London mathematical society, 2(1):230–265, 1937.

[119] Paul Turner. Retpoline: a software construct for preventing branch-target-injection, 2018.

[120] Xabier Ugarte-Pedrero, Davide Balzarotti, Igor Santos, and Pablo G Bringas. SoK: Deep
packer inspection: A longitudinal study of the complexity of run-time packers. In 2015 IEEE
Symposium on Security and Privacy (SP), pages 659–673. IEEE, 2015.

[121] Benjamin VanderSloot, Sergey Frolov, Jack Wampler, Sze Chuen Tan, Irv Simpson, Michalis
Kallitsis, J Alex Halderman, Nikita Borisov, and Eric Wustrow. Running refraction network-
ing for real. Proceedings on Privacy Enhancing Technologies, 2020(4):321–335, 2020.

[122] Ryan Wails, Rob Jansen, Aaron Johnson, and Micah Sherr. Proteus: Programmable Pro-
tocols for Censorship Circumvention. In Free and Open Communications on the Internet
(FOCI), pages 50–66, Lausanne, Switzerland, July 2023. Proceedings on Privacy Enhancing
Technologies Symposium.

[123] Fish Wang and Yan Shoshitaishvili. angr - the next generation of binary analysis. In
Cybersecurity Development (SecDev), 2017 IEEE, pages 8–9. IEEE, 2017.

[124] Gaukas Wang, Anonymous, Jackson Sippe, Hai Chi, and Eric Wustrow. Chasing shadows:
A security analysis of the ShadowTLS proxy. In Free and Open Communications on the
Internet, pages 8–13, Virtual Event, 2023. Proceedings on Privacy Enhancing Technologies
Symposium.

[125] Qiyan Wang, Zi Lin, Nikita Borisov, and Nicholas Hopper. rbridge: User reputation based
tor bridge distribution with privacy preservation. In NDSS, 2013.

[126] Zhenghong Wang and Ruby B Lee. Covert and side channels due to processor architecture. In
Computer Security Applications Conference, 2006. ACSAC’06. 22nd Annual, pages 473–482.
IEEE, 2006.

[127] WebAssembly.org. Compile a webassembly module from…, 2023.

[128] WebAssembly.org. Wasi proposals, Oct 2023.

[129] WebAssembly.org. Wasmtime: Language support, Aug 2023.

[130] Zachary Weinberg, Jeffrey Wang, Vinod Yegneswaran, Linda Briesemeister, Steven Cheung,
Frank Wang, and Dan Boneh. Stegotorus: a camouflage proxy for the tor anonymity system.
In Proceedings of the 2012 ACM conference on Computer and communications security, pages
109–120, 2012.

104

[131] Philipp Winter. Gfw actively probes obfs2 bridges, Mar 2013.

[132] Philipp Winter, Tobias Pulls, and Juergen Fuss. Scramblesuit: A polymorphic network
protocol to circumvent censorship. In Proceedings of the 12th ACM Workshop on Workshop
on Privacy in the Electronic Society, WPES ’13, page 213–224, New York, NY, USA, 2013.
Association for Computing Machinery.

[133] Henry Wong. Measuring reorder buffer capacity, May 2013.

[134] Mingshi Wu, Jackson Sippe, Danesh Sivakumar, Jack Burg, Peter Anderson, Xiaokang Wang,
Kevin Bock, Amir Houmansadr, Dave Levin, and Eric Wustrow. How the great firewall
of china detects and blocks fully encrypted traffic. In 32nd USENIX Security Symposium
(USENIX Security 23), pages 2653–2670, Anaheim, CA, August 2023. USENIX Association.

[135] Zhenyu Wu, Zhang Xu, and Haining Wang. Whispers in the hyper-space: High-speed covert
channel attacks in the cloud. In USENIX Security symposium, pages 159–173, 2012.

[136] Eric Wustrow, Colleen M Swanson, and J Alex Halderman. Tapdance: End-to-middle an-
ticensorship without flow blocking. In 23rd {USENIX} Security Symposium ({USENIX}
Security 14), pages 159–174, 2014.

[137] Eric Wustrow, Scott Wolchok, Ian Goldberg, and J Alex Halderman. Telex: Anticensorship
in the network infrastructure. In USENIX Security Symposium, page 45, 2011.

[138] Xueyang Xu, Z Morley Mao, and J Alex Halderman. Internet censorship in china: Where does
the filtering occur? In International Conference on Passive and Active Network Measurement,
pages 133–142. Springer, 2011.

[139] Diwen Xue, Reethika Ramesh, Arham Jain, Michalis Kallitsis, J. Alex Halderman, Je-
didiah R. Crandall, and Roya Ensafi. OpenVPN is open to VPN fingerprinting. In 31st
USENIX Security Symposium (USENIX Security 22), pages 483–500, Boston, MA, August
2022. USENIX Association.

[140] Yuval Yarom and Katrina Falkner. FLUSH+RELOAD: A high resolution, low noise, l3 cache
side-channel attack. In USENIX Security Symposium, pages 719–732, 2014.

[141] yawning. obfs4 - the obfourscator. https://github.com/Yawning/obfs4, 2021.

[142] Michal Zalewski. American fuzzy lop, 2015.

[143] Yinqian Zhang, Ari Juels, Michael K Reiter, and Thomas Ristenpart. Cross-VM side channels
and their use to extract private keys. In Proceedings of the 2012 ACM conference on Computer
and communications security, pages 305–316. ACM, 2012.

https://github.com/Yawning/obfs4

Appendix A

WATER Supplemental Materials

A.1 Extending wasmtime C API binding

WebAssembly System Interface Preview 1 (wasip1) was solidified without official support for

network sockets and wasi-sockets proposal is only in Phase 2 by the time this paper was written [7]

and still has a long way to go before it can make it to a preview snapshot of standard WASI APIs.

A number of popular WASI runtime software libraries including wazero [117] and wasmedge [48]

have implemented their own sockets support in different ways that are runtime-specific and non-

standard. To make WATER completely WASI runtime-independent and cross-platform, we decided

to keep from features that are only supported or implemented on specific runtime implementations

and stick to the latest official snapshot, wasip1.

To support basic socket operations such as dial(), listen(), read(), and write(), we

implemented our own WebAssembly Transport Module (WATM) API which was described in sec-

tion 3.4. And the two implementations in different programming languages for the water runtime

library provided by us are both based on wasmtime [4], a WASI runtime developed and maintained

by bytecodealliance, who is one of the main organization supporting the WebAssembly standard-

ization. Although wasmtime libraries have been distributed in multiple programming languages

including Rust, Go, and Python, the core functionalities were written in Rust natively and com-

piled into C API to be linked by implementations in other programming languages. However, the

C API is falling behind on schedule and has a few critical interfaces missing.

In order to provide water concurrently in multiple programming languages, we decided to

106

extend the current C API of wasmtime by adding the missing interface/functionalities. Specifically,

we added a set of C APIs that are directly related to file descriptors and file I/O operations

achieved via wasmtime_wasi::WasiCtx, a struct which is currently not accessible through the C

API. Unfortunately, this functionality isn’t prioritized by the authors of wasmtime and didn’t

receive enough attention from them when we tried to contribute back into the main repositories of

wasmtime. Despite our continuing efforts in trying to merge the changes into the main branch, as an

temporary solution, we choose to maintain public fork of repositories wasmtime and wasmtime-go

until our changes gets accepted and merged into the original repositories. Currently the modified

forks are accessible and available to general public.

The authors of this paper are willing to provide the forked repositories as well as the patch

applied to the original repositories as a part of the artifact, should the artifacts of this research

work be requested for inspection.

A.2 Crypto Performance of WASM

WASM is a new technology is still in its early stage of development and running in VM, there-

fore, it is not surprising that it doesn’t have support for hardware acceleration for cryptographic

operations(e.g. SIMD). However, it is still important to evaluate the performance of WASM in

terms of crypto operations. We conducted a performance tests to evaluate the performance of

WASM in terms of crypto operations. See table A.1 for the results.

Configuration Native WASM

AES_256_GCM - 256B ~230 µs ~5300 µs
AES_256_GCM - 1.09G ~200 s ~500 s
CHACHA20_POLY1305 - 256B ~320 µs ~5400 µs
CHACHA20_POLY1305 - 1.09G ~180 s ~200 s

Table A.1: Crypto Performance - MacbookPro

107

A.3 Implementing shadowsocks.wasm

We have been developing two distinct versions of shadowsocks.wasm and a patched ver-

sion of shadowsocks-rust to counteract blocking and demonstrate the feasibility of circumventing

GFW. Both versions of shadowsocks.wasm are designed to handle Shadowsocks’ core function-

alities, including encryption, decryption, and packaging, within the WATER environment. The

latter version, implemented with v1_preview, is optimized for real-world applications, capable of

managing network traffic and configurations. This includes server relay and bypass connections to

whitelisted IPs.

A.3.1 PoC version shadowsocks.wasm

The PoC version utilizes the client and server implementation of the shadowsocks-rust li-

brary, integrating shadowsocks.wasm to just run the main logic for the protocol, which is basically

packaging code with shadowsocks-crypto [22]. The initial challenge we faced was the limitation of

WASI being in its developmental phase, currently supporting only 32-bit targets for compilation.

However, we found that a 32-bit usize integer suffices for the core functionalities of encryption,

decryption, and packet transmission. We plan to continually update our runtime library to align

with the latest advancements in WASI.

A.3.2 Porting from shadowsocks-rust

vanilla_SS (32%) WATER _SS (85%)
2548-2687 810-922
168-242 80-154
… …
1263-1266 493-496

Table A.2: shadowsocks implementation code comparison

We minimize the required changes to shadowsocks-rust’s client code by identifying the pro-

tocol specification section (i.e. encryption, decryption, message framing) and reduced the feature

108

support to only AEAD ciphers and direct connections(act like a transparent relay) for now, along

with tunnel creation for asynchronous networking. We also had to implement a SOCKS5 listener

to directly handle the incoming connections from external web browsers. Table A.2 based on

comparing the implementation of core logic in shadowsocks-rust and WATER-SS implementation,

shows the code change only 85% - 785 / 927 lines matched where only 142 lines of glue code for

integrating all the points we mentioned above.

A.3.3 Patching against GFW

The patch we applied was developed in response to China’s move last year to block fully

encrypted protocols, as reported by [134]. This particular implementation, designed to mitigate

the blocking of shadowsocks by the GFW, was proposed by gfw-report [56] and discussed in detail

on Net4People [57]. Our v1_preview version of shadowsocks successfully incorporates this patch

without necessitating any additional modifications.

Table A.3 showcases the code comparison result of the output of diff on the commit changes

made while patching the official shadowsocks-rust and WATER-shadowsocks. The specific com-

mits compared are the gfw-report shadowsocks-rust Patch Commit linked here and the WATER-

shadowsocks Patch Commit linked here, where it’s obviously showing that the changes in WATER is

matching exactly the same changes in the official shadowsocks-rust patch commit ignoring logging.

shadowsocks-rust_diff.txt (98%) WATER-SS_diff.txt (99%)
8-196 6-194
198-319 195-316
1-5 1-5

Table A.3: MOSS check of diff on patching official v.s. WATER

A.4 More Benchmark Results

The subsequent sections present a detailed Table A.4 outlining benchmark results for both

latency and throughput across varying single packet sizes. In the table, raw TCP serves as the

https://github.com/gfw-report/shadowsocks-rust/commit/d1cf917deebe1999044ca93965a602223de26be7
https://github.com/erikziyunchi/water-rs/pull/14

109

baseline for comparisons in plain mode, while vanilla shadowsocks-rust is used as the baseline for

the Shadowsocks comparisons in this figure A.1 comparing latency and throughput for shadowsocks

to draw a clearer picture of the performance of WATER and finding the optimal packet size for

WATER to balance the latency and throughput.

P Size(B) Raw TCP (Baseline) WATER Proteus

1 24us / 6Mbps +354us / 166.7% +240us / 183.3%
64 25us / 337Mbps +358us / 99.1% +241us / 104.2%
128 25us / 656Mbps +341us / 101.4% +241us / 102.3%
256 24us / 1240Mbps +358us / 102.4% +242us / 100.0%
512 26us / 2210Mbps +356us / 82.8% +250us / 105.4%
768 25us / 3200Mbps +358us / 62.5% +250us / 97.8%
1024 26us / 3930Mbps +359us / 52.4% +251us / 101.3%
2048 51us / 6390Mbps +339us / 31.1% +288us / 88.7%
4096 54us / 9770Mbps +334us / 19.2% +292us / 57.8%

Table A.4: Plain-Relay latency/throughput - CloudLab topology

A.4.1 on Apple Macbook Pro 2021

We conducted more real-world tests on an Apple MacBook Pro 2021, equipped with a 10-core

M1 Max CPU, 64GB of unified memory, and a 32-core GPU. The results are presented in Table

A.5, showcasing performance metrics obtained using iperf3 to connect from Michigan to a server

in San Francisco.

110

0 250 500 750 1000 1250 1500 1750 2000
Packet Size (Bytes)

200

400

600

800

1000

1200

La
te

nc
y

Di
ffe

re
nc

e
be

tw
ee

n
va

ni
lla

-S
S

(u
s) Latency Difference

WATER
Proteus

0

5

10

15

20

25

30

Th
ro

ug
hp

ut
 p

er
ce

nt
ag

e
of

 v
an

illa
-S

S
(%

)Throughput %
WATER
Proteus

Figure A.1: Latency & Throughput Comparison with Vanilla-SS at Different Packet Sizes

Travel through iperf3 - 10s iperf3 - 600s

vanilla-SS 415 / 411 418 / 418
WATER-SS-v1 56.5 / 56.5 56 / 56
WATER-SS-v0 50.0 / 48.3 50.4 / 50.3
Proteus-SS 96.6 / 83.5 68 / 67.8

Table A.5: Sender / Receiver (Mb/s) - MacbookPro

	Introduction
	Contextualization

	Speculative Execution
	Introduction
	Background
	Out-of-Order Execution
	Speculative Execution
	Branch Prediction
	Spectre

	Architecture
	Threat Model
	Indirect jumps
	Limits of Speculative Execution
	Speculative Primitive

	Application Payloads
	Turing Machine
	Unpacking and Decryption
	Emulation

	Triggers
	Benign Program Triggers
	Speculative Buffer Overflow
	Speculative Store Bypass

	Implementation and Evaluation
	Turing Machine
	AES Decryption
	Emulator
	OpenSSL Trigger

	Discussion
	Defenses
	Future Work

	Related Work
	Weird Machines
	Covert Channels
	Speculative Execution

	Conclusion

	Refraction Networking
	Introduction
	Censorship Background
	Proxy Discovery
	Proxy Design
	Tor & Pluggable transports

	Refraction
	First Generation
	Routing Attacks
	Second Generation
	Current Generation

	Design
	Censorship Resistance

	Usage Trends & Analysis of a Censorship Event
	Active Censorship in Iran

	Operating Conjure in Production
	Minimizing Destructive Impact on the Larger System
	Scalability

	Challenges & Open Questions Relating to Refraction
	Routing Predictability
	Key Management
	Quantifying Censorship in IPv6

	Conclusion

	Mechanizing WebAssembly for Censorship Circumvention
	Introduction
	Related Work
	Design
	WATER Runtime Library
	WebAssembly Transport Module(WATM)
	Security Consideration

	Implementation
	Runtime Library
	WebAssembly Transport Module (WATM)

	Evaluation
	Performance Metrics

	Discussion
	Advantages and Limitations
	Future Work

	Conclusion

	Conclusion
	ExSpectre: Achieving Non-Deterministic Behavior using Spectre
	Refraction Networking
	Water: WebAssembly Transport Design

	 Bibliography
	WATER Supplemental Materials
	Extending wasmtime C API binding
	Crypto Performance of WASM
	Implementing shadowsocks.wasm
	PoC version shadowsocks.wasm
	Porting from shadowsocks-rust
	Patching against GFW

	More Benchmark Results
	on Apple Macbook Pro 2021

